1、K-近鄰算法(KNN) 1.1 定義 (KNN,K-NearestNeighbor) 如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。 1.2 距離公式 兩個樣本的距離可以通過如下公式計算,又叫歐式距離。 簡單 ...
1、K-近鄰算法(KNN) 1.1 定義 (KNN,K-NearestNeighbor) 如果一個樣本在特征空間中的k個最相似(即特征空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。 1.2 距離公式 兩個樣本的距離可以通過如下公式計算,又叫歐式距離。 簡單 ...
一,引言 前兩章的KNN分類算法和決策樹分類算法最終都是預測出實例的確定的分類結果,但是,有時候分類器會產生錯誤結果;本章要學的朴素貝葉斯分類算法則是給出一個最優的猜測結果,同時給出猜測的概率估計值。 1 准備知識:條件概率公式 相信學過概率論的同學對於概率論絕對不會陌生,如果一時覺得 ...
注:本系列所有博客將持續更新並發布在github上,您可以通過github下載本系列所有文章筆記文件 1 引言 說到朴素貝葉斯算法,很自然地就會想到貝葉斯概率公式,這是我們在高中的時候就學過的內容,沒錯,這也正是朴素貝葉斯算法的核心,今天我們也從貝葉斯概率公式開始,全面擼一擼朴素貝葉斯算法 ...
聲明:本篇博文是學習《機器學習實戰》一書的方式路程,系原創,若轉載請標明來源。 1 貝葉斯定理的引入 概率論中的經典條件概率公式: 公式的理解為,P(X ,Y)= P(Y,X)<=> P(X | Y)P(Y)= P(Y | X)P (X),即 X 和 Y 同時發生的概率與 Y ...
1. 貝葉斯定理 條件概率公式: 這個公式非常簡單,就是計算在B發生的情況下,A發生的概率。但是很多時候,我們很容易知道P(A|B),需要計算的是P(B|A),這時就要用到貝葉斯定理: 2. 朴素貝葉斯分類 朴素貝葉斯分類的推導過程就不詳述了,其流程可以簡單的用一張圖來表示 ...
朴素貝葉斯是經典的機器學習算法之一,也是為數不多的基於概率論的分類算法。對於大多數的分類算法,在所有的機器學習分類算法中,朴素貝葉斯和其他絕大多數的分類算法都不同。比如決策樹,KNN,邏輯回歸,支持向量機等,他們都是判別方法,也就是直接學習出特征輸出Y和特征X之間的關系,要么是決策函數 ...
1、模型的定義 朴素貝葉斯是基於貝葉斯定理與特征條件獨立假設的分裂方法。首先我們來了解下貝葉斯定理和所要建立的模型。對於給定的數據集 假定輸出的類別yi ∈ {c1, c2, ...., ck},朴素貝葉斯通過訓練數據集的條件概率分布$P(x|y)$來學習聯合概率。因此在 ...
一、概率基礎 概率定義:概率定義為一件事情發生的可能性,例如,隨機拋硬幣,正面朝上的概率。 聯合概率:包含多個條件,且所有條 ...