目錄 1 混淆矩陣衍生指標 1.1 ROC 1.2 AUC 1.3 K-S 1.4 GINI 1.5 小結 1 混淆矩陣衍生指標 上面提到的ACC、PPV、TPR、FPR等指標,都是對某一給定分類 ...
Alink漫談 八 : 二分類評估 AUC K S PRC Precision Recall LiftChart 如何實現 目錄 Alink漫談 八 : 二分類評估 AUC K S PRC Precision Recall LiftChart 如何實現 x 摘要 x 相關概念 x 示例代碼 . 主要思路 x 批處理 . EvalBinaryClassBatchOp . BaseEvalClassB ...
2020-06-26 10:36 1 574 推薦指數:
目錄 1 混淆矩陣衍生指標 1.1 ROC 1.2 AUC 1.3 K-S 1.4 GINI 1.5 小結 1 混淆矩陣衍生指標 上面提到的ACC、PPV、TPR、FPR等指標,都是對某一給定分類 ...
ROC的介紹可以參考wiki https://en.wikipedia.org/wiki/Receiver_operating_characteristic 偷一張wiki上的圖片: AUC ROC的意思為ROC 曲線下方的面積(Area under the Curve ...
ACC, Precision and Recall 這些概念是針對 binary classifier 而言的. 准確率 (accuracy) 是指分類正確的樣本占總樣本個數的比例. 精確率 (precision) 是指分類正確的正樣本占預測為正的樣本個數的比例. 是針對預測 ...
一、混淆矩陣 T和F代表是否預測正確,P和N代表預測為正還是負 這個圖片我們見過太多次了,但其實要搞清楚我們的y值中的1定義是什么,這樣就不會搞錯TP、FP、FN、TN的順序,比如說下面的混淆 ...
本篇博文簡要討論機器學習二分類問題中的混淆矩陣、ROC以及AUC評估指標;作為評價模型的重要參考,三者在模型選擇以及評估中起着指導性作用。 按照循序漸進的原則,依次討論混淆矩陣、ROC和AUC: 設定一個機器學習問題情境:給定一些腫瘤患者樣本,構建一個分類模型來預測腫瘤是良性還是惡性,顯然這是 ...
首先我們可以計算准確率(accuracy),其定義是: 對於給定的測試數據集,分類器正確分類的樣本數與總樣本數之比。也就是損失函數是0-1損失時測試數據集上的准確率。 下面在介紹時使用一下例子: 一個班級有20個女生,80個男生。現在一個分類器需要從100人挑選出所有的女生。該分類器從中選 ...
最近做了一些分類模型,所以打算對分類模型常用的評價指標做一些記錄,說一下自己的理解。使用何種評價指標,完全取決於應用場景及數據分析人員關注點,不同評價指標之間並沒有優劣之分,只是各指標側重反映的信息不同。為了便於后續的說明,先建立一個二分類的混淆矩陣 ,以下各參數的說明都是針對二元分類 ...
,或者通過這個指標來調參優化選用的模型。 對於分類、回歸、聚類等,分別有各自的 ...