原文:Domain Adaptive Faster R-CNN:經典域自適應目標檢測算法,解決現實中痛點,代碼開源 | CVPR2018

論文從理論的角度出發,對目標檢測的域自適應問題進行了深入的研究,基於H divergence的對抗訓練提出了DA Faster R CNN,從圖片級和實例級兩種角度進行域對齊,並且加入一致性正則化來學習域不變的RPN。從實驗來看,論文的方法十分有效,這是一個很符合實際需求的研究,能解決現實中場景多樣,訓練數據標注有限的情況。 來源:曉飛的算法工程筆記 公眾號 論文: Domain Adaptiv ...

2020-06-22 10:22 0 1449 推薦指數:

查看詳情

目標檢測算法--Faster R-CNN、SSD、YOLO

注:本博客截取自多篇文章,只為學習交流     表1.coco2017模型性能對比[1] 一、faster RCNN 這個算法是一個系列,是RBG大神最初從RCNN發展而來,RCNN->fast RCNN->faster RCNN,那么簡單的介紹下前兩種算法 ...

Wed Sep 16 01:34:00 CST 2020 0 479
(五)目標檢測算法Faster R-CNN

系列博客鏈接: (一)目標檢測概述 https://www.cnblogs.com/kongweisi/p/10894415.html (二)目標檢測算法R-CNN https://www.cnblogs.com/kongweisi/p/10895055.html ...

Wed May 22 19:32:00 CST 2019 0 509
對幾種常用的用於目標檢測算法的理解(CNN,R-CNN,Fast R-CNN,Faster R-CNN

對幾種常用的用於目標檢測算法的理解 1 CNN 概述 1.1神經元 神經元是人工神經網絡的基本處理單元,一般是多輸入單輸出的單元,其結構模型如圖1所示。 圖1.神經元模型 其中:Xi 表示輸入信號; n 個輸入信號同時輸入神經元 j 。 Wij表示輸入信號Xi與神經元 j 連接的權重 ...

Sat May 25 23:43:00 CST 2019 0 507
(二)目標檢測算法R-CNN

系列博客鏈接: (一)目標檢測概述 https://www.cnblogs.com/kongweisi/p/10894415.html 概述: 1、目標檢測-Overfeat模型 2、目標檢測-R-CNN模型   2.1 完整R-CNN結構(R-CNN的完整步驟 ...

Tue May 21 01:14:00 CST 2019 0 840
【深度學習】目標檢測算法總結(R-CNN、Fast R-CNNFaster R-CNN、FPN、YOLO、SSD、RetinaNet)

目標檢測是很多計算機視覺任務的基礎,不論我們需要實現圖像與文字的交互還是需要識別精細類別,它都提供了可靠的信息。本文對目標檢測進行了整體回顧,第一部分從RCNN開始介紹基於候選區域的目標檢測器,包括Fast R-CNNFaster R-CNN 和 FPN等。第二部分則重點討論了包括YOLO ...

Sat May 05 23:51:00 CST 2018 3 29557
目標檢測算法(1)目標檢測的問題描述和R-CNN算法

目標檢測(object detection)是計算機視覺中非常具有挑戰性的一項工作,一方面它是其他很多后續視覺任務的基礎,另一方面目標檢測不僅需要預測區域,還要進行分類,因此問題更加復雜。最近的5年使用深度學習方法進行目標檢測取得了很大的突破,因此想寫一個系列來介紹這些方法。這些比較重要的方法 ...

Fri Aug 24 18:26:00 CST 2018 0 6550
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM