接下來要分別概述以下內容: 1 首先什么是參數量,什么是計算量 2 如何計算 參數量,如何統計 計算量 3 換算參數量,把他換算成我們常用的單位,比如:mb 4 對於各個經典網絡,論述他們是計算量大還是參數兩,有什么好處 5 計算量,參數量分別對顯存,芯片提出什么要求 ...
普通卷積 輸入卷積:Win Hin Cin卷積核:k k 輸出卷積:Wout Hout Cout 參數量: 即卷積核的參數 k k Cin Cout或者: k k Cin Cout 包括偏置bias 計算量:k k Cin Wout Hout Cout 深度可分離卷積 Depthwise Separable Convolution 深度可分離卷積可以分為:depthwise conv point ...
2020-05-28 10:43 0 2679 推薦指數:
接下來要分別概述以下內容: 1 首先什么是參數量,什么是計算量 2 如何計算 參數量,如何統計 計算量 3 換算參數量,把他換算成我們常用的單位,比如:mb 4 對於各個經典網絡,論述他們是計算量大還是參數兩,有什么好處 5 計算量,參數量分別對顯存,芯片提出什么要求 ...
目錄: 1、經典的卷積層是如何計算的 2、分析卷積層的計算量 3、分析卷積層的參數量 4、pytorch實現自動計算卷積層的計算量和參數量 1、卷積操作如下: http://cs231n.github.io/assets/conv-demo/index.html 假設 ...
目錄: 1、什么是group convolution? 和普通的卷積有什么區別? 2、分析計算量、flops 3、分析參數量 4、相比於傳統普通卷積有什么優勢以及缺點,有什么改進方法? 5、reference 1、group convolution歷史 ...
目錄: 1、什么是depthwise separable convolution? 2、分析計算量、flops 3、參數量 4、與傳統卷積比較 5、reference ...
卷積核的參數量和計算量 卷積計算量 通常只看乘法計算量: 標准卷積方式 C代表通道數,Ci輸入通道數,C0為輸出通道數。H*W為長寬 如下圖;當前特征圖Ci * H * W ,把特征圖復制C0個,分別與3*3*Ci的卷積核進行卷積,輸出特征圖大小C0 * H * W ...
參考: 1. CNN 模型所需的計算力(flops)和參數(parameters)數量是怎么計算的? 2. TensorFlow 模型浮點數計算量和參數量統計 3. How fast is my model? 計算公式 理論上的計算公式如下: \begin{equation ...
使用更小卷積核的作用 使用更小的卷積核是當前在保證網絡精度的情況下,減少參數的趨勢之一,在VGG16中,使用了3個3*3卷積核來代替7*7卷積核,使用了2個3*3卷積核來代替5*5卷積 ...
文章目錄概述一、利用torchstat 1.1 方法 1.2 代碼 1.3 輸出二、利用ptflops 2.1 方法 2.2 代碼 2.3 輸出三、利用thop 3.1 方法 3.2 代碼 3.3 輸出概述 Params:是指網絡模型中需要訓練的參數總數,理解為參數量 ...