文章轉載自 http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operating Characteristic)曲線和AUC常被用來評價一個二值分類器(binary classifier)的優劣,對兩 ...
二分類模型 AUC 評價法 對於二分類模型,其實既可以構建分類器,也可以構建回歸 比如同一個二分類問題既可以用 SVC 又可以 SVR,python 的 sklearn 中 SVC 和 SVR 是分開的,R 的 e 中都在 svm 中,僅當 y 變量是 factor 類型時構建 SVC,否則構建 SVR 。 二分類模型的評價指標很多,這里僅敘述 AUC 這個指標。分類問題中,正類預測 score ...
2020-05-07 18:37 0 586 推薦指數:
文章轉載自 http://alexkong.net/2013/06/introduction-to-auc-and-roc/ ROC(Receiver Operating Characteristic)曲線和AUC常被用來評價一個二值分類器(binary classifier)的優劣,對兩 ...
ROC的介紹可以參考wiki https://en.wikipedia.org/wiki/Receiver_operating_characteristic 偷一張wiki上的圖片: AUC ROC的意思為ROC 曲線下方的面積(Area under the Curve ...
目錄 1 混淆矩陣衍生指標 1.1 ROC 1.2 AUC 1.3 K-S 1.4 GINI 1.5 小結 1 混淆矩陣衍生指標 上面提到的ACC、PPV、TPR、FPR等指標,都是對某一給定分類 ...
評價指標是針對同樣的數據,輸入不同的算法,或者輸入相同的算法但參數不同而給出這個算法或者參數好壞的定量指標。 以下為了方便講解,都以二分類問題為前提進行介紹,其實多分類問題下這些概念都可以得到推廣。 准確率 准確率是最好理解的評價指標,它是一個比值: \[准確率 = \cfrac ...
liner classifiers 邏輯回歸用在2分類問題上居多。它是一個非線性的回歸模型,其最大的好處恰恰是可以解決二元類問題,目前在金融行業,基本都是使用Logistic回歸來預判一個用戶是否為好客戶,因為它還彌補了其他黑盒模型(SVM、神經網絡、隨機森林等)不具解釋性的缺點。知 ...
Logistic回歸屬於概率型的非線性回歸,分為二分類和多分類的回歸模型。這里只講二分類。 對於二分類的Logistic回歸,因變量y只有“是、否”兩個取值,記為1和0。這種值為0/1的二值品質型變量,我們稱其為二分類變量。 假設在自變量$x_{1}, x_{2}, \cdots ...
一下內容轉載自:https://zh.wikipedia.org/wiki/ROC%E6%9B%B2%E7%BA%BF ROC(Receiver Operating Characteristic)曲線和AUC常被用來評價一個二值分類器(binary classifier)的優劣 ...
混淆矩陣是一種用於性能評估的方便工具,它是一個方陣,里面的列和行存放的是樣本的實際類vs預測類的數量。 P =陽性,N =陰性:指的是預測結果。 T=真,F=假:表示 實際結果與預測結果是否一致,一致為真,不一致為假。 TP=真陽性:預測結果為P,且實際與預測一致。 FP=假陽性:預測 ...