原文:朴素貝葉斯(Naive Bayesian)的理解及優缺點

朴素貝葉斯法是基於貝葉斯定理與特征條件獨立假設的分類方法 定義 貝葉斯方法 貝葉斯方法是以 貝葉斯原理為基礎,使用概率統計的知識對樣本數據集進行分類。由於其有着堅實的數學基礎,貝葉斯分類算法的誤判率是很低的。貝葉斯方法的特點是結合先驗概率和后驗概率,即避免了只使用先驗概率的主觀偏見,也避免了單獨使用樣本信息的過擬合現象。貝葉斯分類算法在數據集較大的情況下表現出較高的准確率,同時算法本身也比較簡單 ...

2020-05-06 11:50 0 1114 推薦指數:

查看詳情

分類算法之朴素分類(Naive Bayesian Classification)

1、什么是分類 分類是一種重要的數據分析形式,它提取刻畫重要數據類的模型。這種模型稱為分類器,預測分類的(離散的,無序的)類標號。例如醫生對病人進行診斷是一個典型的分類過程,醫生不是一眼就 ...

Thu Oct 16 23:46:00 CST 2014 0 13178
機器學習 | 算法筆記- 朴素Naive Bayesian

前言 本系列為機器學習算法的總結和歸納,目的為了清晰闡述算法原理,同時附帶上手代碼實例,便於理解。 目錄    k近鄰(KNN)    決策樹    線性回歸    邏輯蒂回歸    朴素    支持向量機(SVM ...

Mon Mar 11 01:55:00 CST 2019 0 8419
朴素算法(Naive Bayes)

朴素算法(Naive Bayes) 閱讀目錄 一、病人分類的例子 二、朴素貝葉斯分類器的公式 三、賬號分類的例子 四、性別分類的例子   生活中很多場合需要用到分類,比如新聞分類、病人分類等等。   本文 ...

Tue Jul 21 15:47:00 CST 2015 0 3505
朴素算法(Naive Bayes)

1. 前言 說到朴素算法,首先牽扯到的一個概念是判別式和生成式。 判別式:就是直接學習出特征輸出\(Y\)和特征\(X\)之間的關系,如決策函數\(Y=f(X)\),或者從概率論的角度,求出條件分布\(P(Y|X)\)。代表算法有決策樹、KNN、邏輯回歸、支持向量機、隨機條件場 ...

Tue Oct 02 00:45:00 CST 2018 0 5800
[機器學習] 分類 --- Naive Bayes(朴素

Naive Bayes-朴素 Bayes’ theorem(法則) 在概率論和統計學中,Bayes’ theorem(法則)根據事件的先驗知識描述事件的概率。法則表達式如下所示 P(A|B) – 在事件B下事件A發生的條件概率 P(B|A) – 在事件A下事件B發生 ...

Thu Jul 05 00:17:00 CST 2018 0 1673
[Machine Learning & Algorithm] 朴素算法(Naive Bayes)

  生活中很多場合需要用到分類,比如新聞分類、病人分類等等。   本文介紹朴素貝葉斯分類器(Naive Bayes classifier),它是一種簡單有效的常用分類算法。 一、病人分類的例子   讓我從一個例子開始講起,你會看到貝葉斯分類器很好懂,一點都不 ...

Mon Jul 20 16:36:00 CST 2015 2 3244
朴素方法(Naive Bayes Method)

朴素是一種很簡單的分類方法,之所以稱之為朴素,是因為它有着非常強的前提條件-其所有特征都是相互獨立的,是一種典型的生成學習算法。所謂生成學習算法,是指由訓練數據學習聯合概率分布P(X,Y),然后求得后驗概率P(X|Y)。具體來說,利用訓練數據學習P(X|Y)和p(Y)的估計,得到聯合 ...

Fri Jul 24 19:23:00 CST 2015 0 3751
朴素分類法 Naive Bayes ---R

朴素算法 【轉載時請注明來源】:http://www.cnblogs.com/runner-ljt/ Ljt 勿忘初心 無畏未來 作為一個初學者,水平有限,歡迎交流指正。 朴素分類法是一種生成學習算法。 假設:在y給定的條件下,各特征Xi 之間 ...

Sat Jun 20 00:14:00 CST 2015 0 4494
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM