為通過訓練BP神經網絡實現模糊控制規則T=int((e+ec)/2),並達到網絡輸出與期望值誤差小於0.001 ...
BP神經網絡基本概念: .代價函數:神經網絡的訓練過程就是通過代價函數最小化 J 擬合出最優參數 weight 神經網絡的代價函數其實就是一個指標,表明用模型對樣本的擬合程度,可以類比成模型的預測值h x 和樣本輸出yi的差值的方差 待確定 代價函數最小化可以通過梯度下降法或者反向傳播算法實現。分析兩者優劣 神經網絡的代價函數是一個非凸函數,意味着使用優化算法有可能會陷入局部最優解 代價函數中的正 ...
2020-04-21 22:01 0 769 推薦指數:
為通過訓練BP神經網絡實現模糊控制規則T=int((e+ec)/2),並達到網絡輸出與期望值誤差小於0.001 ...
上一章的神經網絡實際上是前饋神經網絡(feedforward neural network),也叫多層感知機(multilayer perceptron,MLP)。具體來說,每層神經元與下一層神經元全互聯,神經元之間不存在同層或跨層連接;輸入層神經元僅接受外界輸入,不進行函數處理;隱藏層與輸出 ...
1 神經網絡 神經網絡就是將許多個單一“神經元”聯結在一起,這樣,一個“神經元”的輸出就可以是另一個“神經元”的輸入。例如,下圖就是一個簡單的神經網絡: 我們使用圓圈來表示神經網絡的輸入,標上“”的圓圈被稱為偏置節點,也就是截距項。神經網絡最左邊的一層叫做輸入層,最右 ...
這里把按 [1] 推導的BP算法(Backpropagation)步驟整理一下。突然想整理這個的原因是知乎上看到了一個帥呆了的求矩陣微分的方法(也就是 [2]),不得不感嘆作者的功力。[1] 中直接使用矩陣微分的記號進行推導,整個過程十分簡潔。而且這種矩陣形式有一個非常大的優勢就是對照 ...
在深度神經網絡(DNN)模型與前向傳播算法中,我們對DNN的模型和前向傳播算法做了總結,這里我們更進一步,對DNN的反向傳播算法(Back Propagation,BP)做一個總結。 1. DNN反向傳播算法要解決的問題 在了解DNN的反向傳播算法前,我們先要知道DNN反向傳播 ...
在神經網絡中,當我們的網絡層數越來越多時,網絡的參數也越來越多,如何對網絡進行訓練呢?我們需要一種強大的算法,無論網絡多復雜,都能夠有效的進行訓練。在眾多的訓練算法中,其中最傑出的代表就是BP算法,它是至今最成功的神經網絡學習算法。在實際任務中,大部分都是使用的BP算法來進行網絡訓練 ...
BP算法: 1.是一種有監督學習算法,常被用來訓練多層感知機。 2.要求每個人工神經元(即節點)所使用的激勵函數必須可微。 (激勵函數:單個神經元的輸入與輸出之間的函數關系叫做激勵函數。) (假如不使用激勵函數,神經網絡中的每層都只是做簡單的線性變換,多層輸入疊加后 ...
神經網絡 神經網絡可以理解為一個輸入x到輸出y的映射函數,即f(x)=y,其中這個映射f就是我們所要訓練的網絡參數w,我們只要訓練出來了參數w,那么對於任何輸入x,我們就能得到一個與之對應的輸出y。只要f不同,那么同一個x就會產生不同的y,我們當然是想要獲得最符合真實數據的y,那么我們就要訓練 ...