代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
代碼來源:https: github.com eriklindernoren ML From Scratch 卷積神經網絡中卷積層Conv D 帶stride padding 的具體實現:https: www.cnblogs.com xiximayou p .html 激活函數的實現 sigmoid softmax tanh relu leakyrelu elu selu softplus :ht ...
2020-04-17 15:58 0 1897 推薦指數:
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
關於卷積操作是如何進行的就不必多說了,結合代碼一步一步來看卷積層是怎么實現的。 代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 先看一下其基本的組件函數,首先是determine_padding(filter_shape ...
最近學習了卷積神經網絡,推薦一些比較好的學習資源 1: https://www.zybuluo.com/hanbingtao/note/485480 2: http://blog.csdn.net/u010540396/article/details/52895074 對於網址,我大部分學習 ...
以下實現參考吳恩達的作業。 一、 padding 從zero_pad的函數中,我們可以看出,我們只需要對原圖片矩陣進行padding操作,而m是圖片的個數,n_C則是channel的個數,這兩個維度並不需要我們做任何操作。 二、 卷積計算 卷積計算的過程中 ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...
代碼來源:https://github.com/eriklindernoren/ML-From-Scratch 卷積神經網絡中卷積層Conv2D(帶stride、padding)的具體實現:https://www.cnblogs.com/xiximayou/p/12706576.html ...