縮寫: NN: neural network, 神經網絡 MSE: Mean Squared Error, 均方誤差 CEE: Cross Entropy Error, 交叉熵誤差.(此縮寫不是一個conventional縮寫) 標記符號: \(net ...
代碼來源:https: github.com eriklindernoren ML From Scratch 卷積神經網絡中卷積層Conv D 帶stride padding 的具體實現:https: www.cnblogs.com xiximayou p .html 激活函數的實現 sigmoid softmax tanh relu leakyrelu elu selu softplus :ht ...
2020-04-16 15:29 0 1992 推薦指數:
縮寫: NN: neural network, 神經網絡 MSE: Mean Squared Error, 均方誤差 CEE: Cross Entropy Error, 交叉熵誤差.(此縮寫不是一個conventional縮寫) 標記符號: \(net ...
交叉熵 分類問題中,預測結果是(或可以轉化成)輸入樣本屬於n個不同分類的對應概率。比如對於一個4分類問題,期望輸出應該為 g0=[0,1,0,0] ,實際輸出為 g1=[0.2,0.4,0.4,0] ,計算g1與g0之間的差異所使用的方法,就是損失函數,分類問題中常用損失函數是交叉熵。 交叉 ...
1.MSE(均方誤差) MSE是指真實值與預測值(估計值)差平方的期望,計算公式如下: MSE = 1/m (Σ(ym-y'm)2),所得結果越大,表明預測效果越差,即y和y'相差越大 2.Cross Entropy Loss(交叉熵) 在理解交叉熵之前 ...
記錄線性回歸問題中常用的均方誤差損失函數和分類問題中常用到的交叉熵損失函數 均方誤差損失函數 首 ...
可以參考這篇博文,很不錯:http://blog.csdn.net/u014313009/article/details/51043064 ...
一.前言 在做神經網絡的訓練學習過程中,一開始,經常是喜歡用二次代價函數來做損失函數,因為比較通俗易懂,后面在大部分的項目實踐中卻很少用到二次代價函數作為損失函數,而是用交叉熵作為損失函數。為什么?一直在思考這個問題,這兩者有什么區別,那個更好?下面通過數學的角度來解釋下 ...
交叉熵損失函數的概念和理解 覺得有用的話,歡迎一起討論相互學習~ 公式 \[ loss =\sum_{i}{(y_{i} \cdot log(y\_predicted_{i}) +(1-y_{i}) \cdot log(1-y\_predicted_{i}) )} \] 定義 ...