參考:菜菜的sklearn教學之降維算法.pdf!! PCA(主成分分析法) 1. PCA(最大化方差定義或者最小化投影誤差定義)是一種無監督算法,也就是我們不需要標簽也能對數據做降維,這就使得其應用范圍更加廣泛了。那么PCA的核心思想是什么呢? 例如D維變量構成的數據集,PCA的目標 ...
PCA算法 主成分分析 Principal Component Analysis,PCA 是最常用的一種降維方法,通常用於高維數據集的探索與可視化,還可以用作數據壓縮和預處理等。PCA可以把具有相關性的高維變量合成為線性無關的低維變量,稱為主成分。主成分能夠盡可能保留原始數據的信息。PCA的計算涉及到對協方差矩陣的理解,這篇博客提供了協方差矩陣的相關內容。PCA的算法過程: 直接用numpy實現P ...
2020-04-14 20:23 2 3125 推薦指數:
參考:菜菜的sklearn教學之降維算法.pdf!! PCA(主成分分析法) 1. PCA(最大化方差定義或者最小化投影誤差定義)是一種無監督算法,也就是我們不需要標簽也能對數據做降維,這就使得其應用范圍更加廣泛了。那么PCA的核心思想是什么呢? 例如D維變量構成的數據集,PCA的目標 ...
float[] vector = docvector.getElementArray(); FloatMatrix d = new FloatMatrix(vector); FloatMatrix result = PCA.dimensionReduction(d, 10); ...
有很多,而且分為線性降維和非線性降維,本篇文章主要講解線性降維中的主成分分析法(PCA)降維。顧名思義,就 ...
轉載請聲明出處:http://blog.csdn.net/zhongkelee/article/details/44064401 一、PCA簡介 1. 相關背景 上完陳恩紅老師的《機器學習與知識發現》和季海波老師的《矩陣代數》兩門課之后,頗有體會。最近在做主成分分析和奇異值分解 ...
前言: PCA是大家經常用來減少數據集的維數,同時保留數據集中對方差貢獻最大的特征來達到簡化數據集的目的。本文通過使用PCA來提取人臉中的特征臉這個例子,來熟悉下在oepncv中怎樣使用PCA這個類。 開發環境 ...
一下在PCA,第一次接觸這個名詞還是在學習有關CNN算法時,一篇博客提到的數據輸入層中,數據簡單處理的幾 ...
背景與原理: PCA(主成分分析)是將一個數據的特征數量減少的同時盡可能保留最多信息的方法。所謂降維,就是在說對於一個$n$維數據集,其可以看做一個$n$維空間中的點集(或者向量集),而我們要把這個向量集投影到一個$k<n$維空間中,這樣當然會導致信息損失,但是如果這個$k$維空間的基底 ...
1.背景 PCA(Principal Component Analysis),PAC的作用主要是減少數據集的維度,然后挑選出基本的特征。 PCA的主要思想是移動坐標軸,找到方差最大的方向上的特征值。什么叫方差最大的方向的特征值呢。就像下圖 ...