tensorflow中使用mnist數據集訓練全連接神經網絡 ——學習曹健老師“人工智能實踐:tensorflow筆記”的學習筆記, 感謝曹老師 前期准備:mnist數據集下載,並存入data目錄: 文件列表:四個文件,分別為訓練和測試集數據 Four files ...
.mnist train.py .mnist inference.py .mnist test.py .predict.py ...
2020-04-10 16:37 0 593 推薦指數:
tensorflow中使用mnist數據集訓練全連接神經網絡 ——學習曹健老師“人工智能實踐:tensorflow筆記”的學習筆記, 感謝曹老師 前期准備:mnist數據集下載,並存入data目錄: 文件列表:四個文件,分別為訓練和測試集數據 Four files ...
網絡結構如下: 代碼如下: 訓練和測試結果如下: 下次更新CIFAR10數據集與改進VGG13網絡 ...
本文轉自:Tensorflow】超大規模數據集解決方案:通過線程來預取 原文地址:https://blog.csdn.net/mao_xiao_feng/article/details/73991787 現在讓我們用Tensorflow實現一個具體的Input pipeline ...
1.工程目錄 2.導入data和input_data.py 鏈接:https://pan.baidu.com/s/1EBNyNurBXWeJVyhNeVnmnA 提取碼:4nnl 3.CNN.py import tensorflow as tf import ...
在我的上一篇隨筆中,采用了單層神經網絡來對MNIST進行訓練,在測試集中只有約90%的正確率。這次換一種神經網絡(多層神經網絡)來進行訓練和測試。 1、獲取MNIST數據 MNIST數據集只要一行代碼就可以獲取的到,非常方便。關於MNIST的基本信息可以參考我的上一篇隨筆 ...
前面兩篇隨筆實現的單層神經網絡 和多層神經網絡, 在MNIST測試集上的正確率分別約為90%和96%。在換用多層神經網絡后,正確率已有很大的提升。這次將采用卷積神經網絡繼續進行測試。 1、模型基本結構 如下圖所示,本次采用的模型共有8層(包含dropout層)。其中卷積層 ...
View Code 上面是LeNet-5train.py文件的內容。 與全連接層相比,卷積層的train.py文件主要調整了輸入參數的維度,和增加了過濾器的深度 ...
一、前言 本文會詳細地闡述caffe-windows的配置教程。由於博主自己也只是個在校學生,目前也寫不了太深入的東西,所以准備從最基礎的開始一步步來。個人的計划是分成配置和運行官方教程,利用自己的數據集進行訓練和利用caffe來實現別人論文中的模型(目前在嘗試的是輕量級 ...