本文始發於個人公眾號:TechFlow,原創不易,求個關注 今天是機器學習專題的第13篇文章,我們來看下Kmeans算法的優化。 在上一篇文章當中我們一起學習了Kmeans這個聚類算法,在算法的最后我們提出了一個問題:Kmeans算法雖然效果不錯,但是每一次迭代都需要遍歷全量的數據 ...
感謝參考原文 http: bjbsair.com tech info .html mini batch mini batch的思想非常朴素,既然全體樣本當中數據量太大,會使得我們迭代的時間過長,那么我們 縮小數據規模 行不行 那怎么減小規模呢,很簡單,我們隨機從整體當中做一個抽樣, 選取出一小部分數據來代替整體 。這樣我們人為地縮小樣本的規模,不就可以提升迭代的速度了 通過抽樣我們的確可以提升迭代 ...
2020-03-27 15:59 0 1561 推薦指數:
本文始發於個人公眾號:TechFlow,原創不易,求個關注 今天是機器學習專題的第13篇文章,我們來看下Kmeans算法的優化。 在上一篇文章當中我們一起學習了Kmeans這個聚類算法,在算法的最后我們提出了一個問題:Kmeans算法雖然效果不錯,但是每一次迭代都需要遍歷全量的數據 ...
上文原始Kmeans提到,由於Kmeans使用啟發式迭代,所以當初始點不當時,導致得不到全局最優。 Kmeans++ 這個算法思想也很簡單,與原始Kmeans唯一不同的是選擇初始點的方式。 如圖 假設,我們的樣本如上圖分布,准備選擇3個初始點,即k=3。 第一,我隨機選擇 ...
前一陣子有一個學弟問kmeans算法的初始中心點怎么選,有沒有什么算法。我讓他看看kmeans++,結果學弟說有地方沒看懂。然后,他不懂的地方,我給標注了一下。 下面是網上的資料,我對畫線的地方做了標注。 k-means++算法選擇初始seeds的基本思想就是:初始的聚類中心之間 ...
再進行Mini-batch 梯度下降法學習之前,我們首先對梯度下降法進行理解 一、梯度下降法(Gradient Descent) 優化思想:用當前位置的負梯度方向作為搜索方向,亦即為當前位置下降最快的方向,也稱“最速下降法”。越接近目標值時,步長越小,下降越慢。 首先來看看梯度下降 ...
一、 環境: Python 3.7.4 Pycharm Community 2019.3 二、 問題: 對六個樣本點[1, 5], [2, 4], [ ...
零:環境 python 3.6.5 JetBrains PyCharm 2018.1.4 x64 一:KMeans算法大致思路 KMeans算法是機器學習中的一種無監督聚類算法,是針對不具有類型的數據進行分類的一種算法 形象的來說可以說成是給定一組點data,給定要分類的簇數k ...
結果: 總結:可知不同的超參數對聚類的效果影響很大,因此在聚類之前采樣的數據要盡量保持均勻,各類的方差最好先進行預研,以便達到較好的聚類效果! ...
一.kmeans聚類: 基本方法流程 1.首先隨機初始化k個中心點 2.將每個實例分配到與其最近的中心點,開成k個類 3.更新中心點,計算每個類的平均中心點 4.直到中心點不再變化或變化不大或達到迭代次數 優缺點:該方法簡單,執行速度較快。但其對於離群點處理不是很好,這是可以去除離群點 ...