Introduction 本文主要提出了高效且容易實現的STA框架(Spatial-Temporal Attention)來解決大規模video Reid問題。框架中融合了一些創新元素:幀選取、判別 ...
Introduction 本文有如下 個貢獻: 提出了一個自下而上 bottom up 的聚類框架 BUC 來解決無監督的ReID問題 采用repelled損失來優化模型,repelled損失直接優化了樣本 聚類之間的余弦距離,可以挖掘聚類之間的相似性以及最大化不同身份之間的差異性 提出了一個多樣性正則化項來保證每個聚類內部圖像數量的平衡性,使得聚類結果更符合真實環境下的分布規律。 開源 http ...
2020-03-13 17:15 0 1018 推薦指數:
Introduction 本文主要提出了高效且容易實現的STA框架(Spatial-Temporal Attention)來解決大規模video Reid問題。框架中融合了一些創新元素:幀選取、判別 ...
Introduction (1)Motivation: 當前的reid存在語義不對齊的問題,如下圖: 圖(a)顯示了不同圖片的相同位置對應了行人的不同身體部位;圖(b)顯示了不同圖片呈現的部 ...
Introduction 為了提取兩個特征之間的相關性,設計了Relation Module(RM)來計算相關性向量; 為了減小背景干擾,關注局部的信息區域,采用了Relation-Guided ...
Introduction (1)Motivation: 解決跨模態reid的方法主要有兩類:模態共享特征學習(modality-shared feature learning)、模態特定特征補償( ...
本文提出的方法思想是利用屬性信息來挖掘各個局部特征的權重,如下圖所示。 網絡框架如下圖。框架對人體的六組屬性進行了區分:性別&年齡、頭部、上半身、下半身、鞋子、背包拎包等,具體見下表。通 ...
Introduction 該文章首次采用深度學習方法來解決基於視頻的行人重識別,創新點:提出了一個新的循環神經網絡架構(recurrent DNN architecture),通過使用Siamese ...
Introduction (1)Motivation: 當前采用CNN-RNN模型解決行人重識別問題僅僅提取單一視頻序列的特征表示,而沒有把視頻序列匹配間的影響考慮在內,即在比較不同人的時候,根據 ...
Introduction (1)Motivation: 在匹配過程中,存在行人的不同圖片語義信息不對齊、局部遮擋等現象,如下圖: (2)Contribution: ① 提出了Spin ...