2小時,我在這里取其精華,總結一下主要內容。 不像bagging算法只能改善模型高方差(high var ...
加載語料庫及預處理 本文選用的語料庫為sklearn自帶API的 newsgroups語料庫,該語料庫包含商業 科技 運動 航空航天等多領域新聞資料,很適合NLP的初學者進行使用。sklearn newsgroups給出了非常詳細的介紹。 預處理方面,直接調用了NLTK的接口進行小寫化 分詞 去除停用詞 POS篩選及詞干化。這里進行哪些操作完全根據實際需要和數據來定,比如我就經常放棄詞干化或者放棄 ...
2020-03-10 17:29 0 6912 推薦指數:
2小時,我在這里取其精華,總結一下主要內容。 不像bagging算法只能改善模型高方差(high var ...
得知李航老師的《統計學習方法》出了第二版,我第一時間就買了。看了這本書的目錄,非常高興,好家伙,居然把主題模型都寫了,還有pagerank。一路看到了馬爾科夫蒙特卡羅方法和LDA主題模型這里,被打擊到了,滿滿都是數學公式。LDA是目前為止我見過最復雜的模型了。 找了培訓班的視頻看,對LDA模型 ...
最近做文本匹配算法比賽遇到LDA抽取特征,故結合西瓜書,總結一下LDA LDA用生成式模型的角度來看待文檔和主題。假設每篇文檔包含了多個主題,用θd表示文檔t每個話題所占比例,θd,k表示文檔t中包含主題d所占用的比例,繼而通過如下過程生成文檔d。 (1)根據參數為α的狄利克雷分布,隨機 ...
簡述LDA 什么是LDA主題模型 主題分布與詞分布 兩點分布 二項分布 多項式分布 參數估計 ...
目錄 LDA 主題模型 幾個重要分布 模型 Unigram model Mixture of unigrams model PLSA模型 LDA 怎么確定LDA ...
隨着互聯網的發展,文本分析越來越受到重視。由於文本格式的復雜性,人們往往很難直接利用文本進行分析。因此一些將文本數值化的方法就出現了。LDA就是其中一種很NB的方法。 LDA有着很完美的理論支撐,而且有着維度小等一系列優點。本文對LDA算法進行介紹,歡迎批評指正。 本文目錄 ...
上個月參加了在北京舉辦SIGKDD國際會議,在個性化推薦、社交網絡、廣告預測等各個領域的workshop上都提到LDA模型,感覺這個模型的應用挺廣泛的,會后抽時間了解了一下LDA,做一下總結: (一)LDA作用 傳統判斷兩個文檔相似性的方法是通過查看兩個文檔共同出現的單詞 ...
在前面我們講到了基於矩陣分解的LSI和NMF主題模型,這里我們開始討論被廣泛使用的主題模型:隱含狄利克雷分布(Latent Dirichlet Allocation,以下簡稱LDA)。注意機器學習還有一個LDA,即線性判別分析,主要是用於降維和分類的,如果大家需要了解這個LDA的信息,參看之前寫 ...