3.2.1 算法流程 遺傳算法優化使用遺傳算法優化BP神經網絡的權值和闊值,種群中的每個 ...
近期在准備美賽,因為比賽需要故重新安裝了matlab,在里面想嘗試一下神將網絡工具箱。就找了一個看起來還挺賞心悅目的函數例子練練手: y sin pi x 針對這個函數,我們首先畫出其在 , 上的函數圖像,這里間隔為 . .代碼為: 畫出的圖像如下: 然后我們通過建立神經網絡,並且訓練,設置訓練時間為 .這里采用了四層神經網絡。 最后訓練的結果如下,還是可以接受的 ...
2020-02-23 19:16 0 2333 推薦指數:
3.2.1 算法流程 遺傳算法優化使用遺傳算法優化BP神經網絡的權值和闊值,種群中的每個 ...
2.1 案例背景 在工程應用中經常會遇到一些復雜的非線性系統,這些系統狀態方程復雜,難以用數學方法准確建模。在這種情況下,可以建立BP神經網絡表達這些非線性系統。該方法把未知系統看成是一個黑箱,首先用系統輸入輸出數據訓練BP神經網絡,使網絡能夠表達該未知函數,然后用訓練好的BP神經網絡預測系統 ...
遺傳算法基本的操作分為: 1.選擇操作 2.交叉操作 3.變異操作 遺傳算法的基本要素包括染色體編碼方法、適應度函數、遺傳操作和運行參數。 遺傳算法優化BP神經網絡算法流程如圖3-4所示: 遺傳算法實現:遺傳算法優化BP神經網絡的要素包括種群初始化、適應度函數、選擇操作、交叉 ...
代碼為MNIST數據集上運行簡單BP神經網絡的python實現。 以下公式和文字來自Wanna_Go的博文 http://www.cnblogs.com/wxshi/p/6077734.html,包含詳盡的描述和推導。 BP神經網絡 單個神經 ...
BP(Back Propagation)神經網絡是1986年由Rumelhart和McCelland為首的科學家小組提出,是一種按誤差逆傳播算法訓練的多層前饋網絡,是目前應用最廣泛的神經網絡模型之一。BP網絡能學習和存貯大量的輸入-輸出模式映射關系,而無需事前揭示描述這種映射關系 ...
擬合別無二致。 Logistic回歸對該模型進行了改良: 線性神經網絡(回歸)使用的LMS( ...
BP神經網絡 人工神經網絡與人工神經元模型 In machine learning and cognitive science, artificial neural networks (ANNs) are a family of statistical learning ...
由於課題需要學習神經網絡也有一段時間了,每次只是調用一下matlab的newff函數設置幾個參數,就自以為掌握了。真是可笑,會了其實只是會使用,一知半解而已。 本來想寫人工神經網絡,但是范圍太廣,無法駕馭,姑且就先寫BP吧,因為BP是目前應用最廣泛的神經網絡 ...