SGD SGD指stochastic gradient descent,即隨機梯度下降。是梯度下降的batch版本。 對於訓練數據集,我們首先將其分成n個batch,每個batch包含m個樣本。我們每次更新都利用一個batch的數據,而非整個訓練集。即: xt+1 ...
. 梯度下降 沿着目標函數梯度的反方向搜索極小值。 式中, theta 是模型參數, J theta 目標函數 損失函數 , eta 是學習率。 . 隨機梯度下降 SGD 每次隨機選定一小批 mini batch 數據進行梯度的計算,而不是計算全部的梯度。所有小批量數據都訓練完,我們稱為完成了一個迭代期 epoch 。 . Momentum 想象損失函數是一個山谷,一個球從山谷滑下來,在一個平坦 ...
2020-02-22 23:12 0 770 推薦指數:
SGD SGD指stochastic gradient descent,即隨機梯度下降。是梯度下降的batch版本。 對於訓練數據集,我們首先將其分成n個batch,每個batch包含m個樣本。我們每次更新都利用一個batch的數據,而非整個訓練集。即: xt+1 ...
在機器學習、深度學習中使用的優化算法除了常見的梯度下降,還有 Adadelta,Adagrad,RMSProp 等幾種優化器,都是什么呢,又該怎么選擇呢? 在 Sebastian Ruder 的這篇論文中給出了常用優化器的比較,今天來學習一下:https://arxiv.org ...
在機器學習、深度學習中使用的優化算法除了常見的梯度下降,還有 Adadelta,Adagrad,RMSProp 等幾種優化器,都是什么呢,又該怎么選擇呢? 在 Sebastian Ruder 的這篇論文中給出了常用優化器的比較,今天來學習一下:https://arxiv.org/pdf ...
在機器學習、深度學習中使用的優化算法除了常見的梯度下降,還有 Adadelta,Adagrad,RMSProp 等幾種優化器,都是什么呢,又該怎么選擇呢? 在 Sebastian Ruder 的這篇論文中給出了常用優化器的比較,今天來學習一下:https://arxiv.org/pdf ...
1. SGD的不足: ①呈“之”字型,迂回前進,損失函數值在一些維度的改變得快(更新速度快),在一些維度改變得慢(速度慢)- 在高維空間更加普遍 ②容易陷入局部極小值和鞍點: 局部最小值: 鞍點: ③對於凸優化而言,SGD不會收斂,只會在最優 ...
目錄 Adagrad法 RMSprop法 Momentum法 Adam法 參考資料 發展歷史 標准梯度下降法的缺陷 如果學習率選的不恰當會出現以上情況 因此有一些自動調學習率的方法。一般來說,隨着迭代次數的增加,學習率應該越來越小 ...
前言 這里討論的優化問題指的是,給定目標函數f(x),我們需要找到一組參數x(權重),使得f(x)的值最小。 本文以下內容假設讀者已經了解機器學習基本知識,和梯度下降的原理。 SGD SGD指stochastic gradient descent,即隨機梯度下降。是梯度下降 ...
轉載 https://blog.csdn.net/itchosen/article/details/77200322 各種神經網絡優化算法:從梯度下降到Adam方法 ...