2019/3/25 一元線性回歸——梯度下降/最小二乘法又名:一兩位小數點的悲劇 感覺這個才是真正的重頭戲,畢竟前兩者都是更傾向於直接使用公式,而不是讓計算機一步步去接近真相,而這個梯度下降就不一樣了,計算機雖然還是跟從現有語句/公式,但是在不斷嘗試中一步步接近目的地。 簡單來說,梯度下降的目的 ...
.一元線性回歸與損失函數 在我們解決一元線性回歸進行擬合曲線的時候,常常會使用梯度下降法。 假設我們的數據集為 我們想將其擬合成一條曲線,然后進行訓練。擬合曲線表示如下 我們如何去擬合呢 顯然兩點確定一條直線的。我們就其次,然后求得一個函數,各個點到該函數的方差和最小,於是,我們將其稱為損失函數 也叫代價函數 目標函數 ,該函數如下 該方程為凸函數,並且有極小值。 .梯度下降法求解最小值 我們解 ...
2020-02-07 01:11 0 1053 推薦指數:
2019/3/25 一元線性回歸——梯度下降/最小二乘法又名:一兩位小數點的悲劇 感覺這個才是真正的重頭戲,畢竟前兩者都是更傾向於直接使用公式,而不是讓計算機一步步去接近真相,而這個梯度下降就不一樣了,計算機雖然還是跟從現有語句/公式,但是在不斷嘗試中一步步接近目的地。 簡單來說,梯度下降的目的 ...
梯度下降法 梯度下降法(英語:Gradient descent)是一個一階最優化算法,通常也稱為最速下降法。 要使用梯度下降法找到一個函數的局部極小值,必須向函數上當前點對應梯度(或者是近似梯度)的反方向的規定步長距離點進行迭代搜索。如果相反地向梯度正方向迭代進行搜索,則會接近函數的局部極大值點 ...
通過學習斯坦福公開課的線性規划和梯度下降,參考他人代碼自己做了測試,寫了個類以后有時間再去擴展,代碼注釋以后再加,作業好多: 圖1. 迭代過程中的誤差cost ...
看了coursea的機器學習課,知道了梯度下降法。一開始只是對其做了下簡單的了解。隨着內容的深入,發現梯度下降法在很多算法中都用的到,除了之前看到的用來處理線性模型,還有BP神經網絡等。於是就有了這篇文章。 本文主要講了梯度下降法的兩種迭代思路,隨機梯度下降(Stochastic ...
接着上文——機器學習基礎——梯度下降法(Gradient Descent)往下講。這次我們主要用matlab來實現更一般化的梯度下降法。由上文中的幾個變量到多個變量。改變算法的思路,使用矩陣來進行計算。同時對算法的優化和調參進行總結。即特征縮放(feature scaling)問題和學習速率 ...
一、機器學習概述: 1. 學習動機: 機器學習已經在不知不覺中滲透到人們生產和生活中的各個領域,如郵箱自動過濾的垃圾郵件、搜索引擎對鏈接的智能排序、產品廣告的個性化推薦等; 機器學習 ...
線性回歸形如y=w*x+b的形式,變量為連續型(離散為分類)。一般求解這樣的式子可采用最小二乘法原理,即方差最小化, loss=min(y_pred-y_true)^2。若為一元回歸,就可以求w與b的偏導,並令其為0,可求得w與b值;若為多元線性回歸, 將用到梯度下降法求解,這里的梯度值w的偏 ...
Step1 Plotting the Data 在處理數據之前,我們通常要了解數據,對於這次的數據集合,我們可以通過離散的點來描繪它,在一個2D的平面里把它畫出來。 ...