原文:《機器學習(周志華)》筆記--線性模型(4)--梯度解釋、梯度下降法算法思想、算法原理、算法流程、代碼實現

四 邏輯回歸 梯度下降法 梯度解釋 偏導數:簡單來說是對於一個多元函數,選定一個自變量並讓其他自變量保持不變,只考察因變量與選定自變量的變化關系。 梯度:梯度的本意是一個向量,由函數對每個參數的偏導組成,表示某一函數在該點處的方向導數沿着該方向取得最大值,即函數在該點處沿着該方向變化最快,變化率最大。 梯度向量的方向即為函數值增長最快的方向,沿着梯度方向可以最快地找到函數的最大值,而我們要求誤差的 ...

2020-02-01 11:46 0 908 推薦指數:

查看詳情

算法學習筆記——梯度下降法原理及其代碼實現

梯度下降法原理以及代碼實現 本篇博客承接本人上一篇關於逐步回歸算法的引申,本篇將開始整理梯度下降算法的相關知識。梯度下降,gradient descent(之后將簡稱GD),是一種通過迭代找最優的方式一步步找到損失函數最小值的算法,基本算法思路可總結為如下幾點: (1) 隨機設置一個初始值 ...

Wed Jan 22 22:52:00 CST 2020 0 2424
機器學習概念之梯度下降算法(全量梯度下降算法、隨機梯度下降算法、批量梯度下降算法

  不多說,直接上干貨! 回歸與梯度下降   回歸在數學上來說是給定一個點集,能夠用一條曲線去擬合之,如果這個曲線是一條直線,那就被稱為線性回歸,如果曲線是一條二次曲線,就被稱為二次回歸,回歸還有很多的變種,如本地加權回歸、邏輯回歸,等等。   用一個 ...

Wed Sep 06 03:40:00 CST 2017 0 4220
機器學習——梯度下降算法

梯度下降法是一個 最優化算法,通常也稱為 最速下降法。 最速下降法是求解無約束優化問題最簡單和最古老的方法之一,雖然現在已經不具有實用性,但是許多有效算法都是以它為基礎進行改進和修正而得到的。 最速下降法是用 負梯度方向為搜索方向的,最速下降法越接近目標值,步長越小,前進 ...

Wed Nov 16 05:21:00 CST 2016 0 1752
機器學習梯度下降算法原理講解

背景 學習機器學習時作為基礎概念。 轉載自: 《梯度下降算法原理講解——機器學習》 1. 概述 梯度下降(gradient descent)在機器學習中應用十分的廣泛,不論是在線性回歸還是Logistic回歸中,它的主要目的是通過迭代找到目標函數的最小值,或者收斂到最小值。 本文 ...

Fri Jan 10 22:02:00 CST 2020 0 804
斯坦福CS229機器學習課程筆記一:線性回歸與梯度下降算法

應該是去年的這個時候,我開始接觸機器學習的相關知識,當時的入門書籍是《數據挖掘導論》。囫圇吞棗般看完了各個知名的分類器:決策樹、朴素貝葉斯、SVM、神經網絡、隨機森林等等;另外較為認真地復習了統計學,學習線性回歸,也得以通過orange、spss、R做一些分類預測工作。可是對外說自己是搞機器學習 ...

Thu Jul 16 22:26:00 CST 2015 0 3874
機器學習(一)梯度下降算法實現及過程分析

機器學習(一)梯度下降算法 因為算法最好能應用到實際問題中才會讓讀者感到它的真實的用處,因此首先我來描述一個實際問題(梯度下降算法用以幫助解決該問題):給定一個指定的數據集,比如由若干某一地區的房屋面積和房屋價格這樣的數據對(area, price)組成 ...

Thu Mar 22 06:11:00 CST 2018 0 1991
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM