2 模型評估與選擇 2.1評估方法 2.1.1訓練集和測試集 實例1:鳶尾花數據集(Iris) 鳶尾花數據集(Iris)是一個經典數據集。數據集內包含 3 類共 150 條記錄 ...
六 sklearn中的分類性能指標 機器學習中常使用 sklearn 完成對模型分類性能的評估,我們需要掌握使用 sklearn 提供的以下接口: accuracy score 准確度 precision score 精准率 recall score 召回率 f score F Score roc auc score AUC confusion matrix 混淆矩陣 accu fracy sco ...
2020-01-18 21:14 0 740 推薦指數:
2 模型評估與選擇 2.1評估方法 2.1.1訓練集和測試集 實例1:鳶尾花數據集(Iris) 鳶尾花數據集(Iris)是一個經典數據集。數據集內包含 3 類共 150 條記錄 ...
五、衡量分類任務的性能指標 5、ROC曲線與AUC (1)ROC曲線 ROC曲線( Receiver Operating Cha\fracteristic Curve )描述的 TPR ( True Positive Rate )與 FPR ( False Positive ...
五、衡量分類任務的性能指標 3、精准度與召回率 精准率(Precision)指的是模型預測為 Positive 時的預測准確度,其計算公式如下: 召回率(Recall)指的是我們關注的事件發生了,並且模型預測正確了的比值 ...
四、衡量回歸的性能指標 1、均方誤差-MSE(Mean Squared Error) 其中y^i表示第 i 個樣本的真實標簽,p^i表示模型對第 i 個樣本的預測標簽。 線性回歸的目的就是讓損失函數最小。那么模型訓練出來了,我們在測試集 ...
###基礎概念 在建模過程中,由於偏差過大導致的模型欠擬合以及方差過大導致的過擬合的存在,為了解決這兩個問題,我們需要一整套方法及評價指標。其中評估方法用於評估模型的泛化能力,而性能指標則用於評價單個模型性能的高低。 ####泛化性能 模型的泛化性能是由學習算法的能力,數據的充分性及學習 ...
轉載:性能指標(模型評估)之mAP 什么是性能指標 用於評價模型的好壞,當然使用不同的性能指標對模型進行評價往往會有不同的結果,也就是說模型的好壞是“相對”的,什么樣的模型好的,不僅取決於算法和數據,還決定於任務需求。因此,選取一個合理的模型評價指標是非常有必要 ...
分類器性能指標之ROC曲線、AUC值 一 roc曲線 1、roc曲線:接收者操作特征(receiveroperating characteristic),roc曲線上每個點反映着對同一信號刺激的感受性。 橫軸:負正類率(false postive rate FPR)特異度,划分實例中所有負例 ...
在介紹ROC曲線之前,先說說混淆矩陣及兩個公式,因為這是ROC曲線計算的基礎。 1.混淆矩陣的例子(是否點擊廣告): 說明: TP:預測的結果跟 ...