1. 反向傳播算法介紹 誤差反向傳播(Error Back Propagation)算法,簡稱BP算法。BP算法由信號正向傳播和誤差反向傳播組成。它的主要思想是由后一級的誤差計算前一級的誤差,從而極大減少運算量。 設訓練數據為\(\{\bm{(x^{(1)},y^{(1)}),\cdots,(x ...
原文鏈接:這里 介紹 反向傳播算法可以說是神經網絡最基礎也是最重要的知識點。基本上所以的優化算法都是在反向傳播算出梯度之后進行改進的。同時,也因為反向傳播算法是一個遞歸的形式,一層一層的向后傳播誤差即可,很容易實現 這部分聽不懂沒關系,下面介紹 。不要被反向傳播嚇到,掌握其核心思想就很容易自己手推出來。 思想 我們知道神經網絡都是有一個loss函數的。這個函數根據不同的任務有不同的定義方式,但是這 ...
2020-01-07 22:44 0 848 推薦指數:
1. 反向傳播算法介紹 誤差反向傳播(Error Back Propagation)算法,簡稱BP算法。BP算法由信號正向傳播和誤差反向傳播組成。它的主要思想是由后一級的誤差計算前一級的誤差,從而極大減少運算量。 設訓練數據為\(\{\bm{(x^{(1)},y^{(1)}),\cdots,(x ...
知識回顧 1:首先引入一些便於稍后討論的新標記方法: 假設神經網絡的訓練樣本有m個,每個包含一組輸入x和一組輸出信號y,L表示神經網絡的層數,S表示每層輸入的神經元的個數,SL代表最后一層中處理的 ...
BP算法為深度學習中參數更新的重要角色,一般基於loss對參數的偏導進行更新。 一些根據均方誤差,每層默認激活函數sigmoid(不同激活函數,則更新公式不一樣) 假設網絡如圖所示: 則更新公式為: 以上列舉了最后2層的參數更新方式,第一層的更新公式類似,即上一層的誤差來自於下一層 ...
作者:匿名用戶 鏈接:https://www.zhihu.com/question/27239198/answer/89853077 來源:知乎 著作權歸作者所有,轉載請聯系作者獲得授權。 BackPropagation算法是多層神經網絡的訓練中舉足輕重的算法 ...
全文參考《機器學習》-周志華中的5.3節-誤差逆傳播算法;整體思路一致,敘述方式有所不同; 使用如上圖所示的三層網絡來講述反向傳播算法; 首先需要明確一些概念, 假設數據集\(X=\{x^1, x^2, \cdots, x^n\}, Y=\{y^i, y^2, \cdots, y^n ...
假設給定m個訓練樣本的訓練集,用梯度下降法訓練一個神經網絡,對於單個訓練樣本(x,y),定義該樣本的損失函數: 那么整個訓練集的損失函數定義如下: 第一項是所有樣本的方差的均值。第二項是一 ...
1 BP算法的推導 圖1 一個簡單的三層神經網絡 圖1所示是一個簡單的三層(兩個隱藏層,一個輸出層)神經網絡結構,假設我們使用這個神經網絡來解決二分類問題,我們給這個網絡一個輸入樣本,通過前向運算得到輸出。輸出值的值域為,例如的值越接近0,代表該樣本是“0”類 ...
反向傳播算法是深度學習的最重要的基礎,這篇博客不會詳細介紹這個算法的原理和細節。,如果想學習反向傳播算法的原理和細節請移步到這本不錯的資料。這里主要討論反向傳播算法中的一個小細節:反向傳播算法為什么要“反向”? 背景 在機器學習中,很多算法最后都會轉化為求一個目標損失函數(loss ...