1. 特征工程之特征預處理 2. 特征工程之特征選擇 1. 前言 當數據預處理完成后,我們需要選擇有意義的特征輸入機器學習的算法和模型進行訓練。 2. 特征選擇的方法 通常來說,從兩個方面考慮來選擇特征: 特征是否發散:如果一個特征不發散,例如方差接近於0,也就是說樣本在這個特征 ...
基礎概念 特征工程是通過對原始數據的處理和加工,將原始數據屬性通過處理轉換為數據特征的過程,屬性是數據本身具有的維度,特征是數據中所呈現出來的某一種重要的特性,通常是通過屬性的計算,組合或轉換得到的。比如主成分分析就是將大量的數據屬性轉換為少數幾個特征的過程。某種程度而言,好的數據以及特征往往是一個性能優秀模型的基礎。 既然叫特征工程,自然涵蓋了很多內容,而其中涉及到的比較重要的部分是特征的處理及 ...
2019-12-18 22:10 0 245 推薦指數:
1. 特征工程之特征預處理 2. 特征工程之特征選擇 1. 前言 當數據預處理完成后,我們需要選擇有意義的特征輸入機器學習的算法和模型進行訓練。 2. 特征選擇的方法 通常來說,從兩個方面考慮來選擇特征: 特征是否發散:如果一個特征不發散,例如方差接近於0,也就是說樣本在這個特征 ...
特征工程是數據分析中最耗時間和精力的一部分工作,它不像算法和模型那樣是確定的步驟,更多是工程上的經驗和權衡。因此沒有統一的方法。這里只是對一些常用的方法做一個總結。本文關注於特征選擇部分。后面還有兩篇會關注於特征表達和特征預處理。 1. 特征的來源 在做數據分析的時候,特征 ...
在前面我們分別討論了特征工程中的特征選擇與特征表達,本文我們來討論特征預處理的相關問題。主要包括特征的歸一化和標准化,異常特征樣本清洗與樣本數據不平衡問題的處理。 1. 特征的標准化和歸一化 由於標准化和歸一化這兩個詞經常混用,所以本文不再區別標准化和歸一化,而通過具體 ...
1. 特征工程之特征預處理 2. 特征工程之特征選擇 1. 前言 “數據決定了機器學習的上限,而算法只是盡可能逼近這個上限”,這里的數據指的就是經過特征工程得到的數據。特征工程指的是把原始數據轉變為模型的訓練數據的過程,它的目的就是獲取更好的訓練數據特征,使得機器學習模型逼近這個上限。特征 ...
title: sklearn-特征工程之特征選擇 date: 2016-11-25 22:49:24 categories: skearn tags: sklearn 抄襲/參考資料 使用sklearn做單機特征工程 sckearn中文 周志華《機器學習》 當數據 ...
在特征工程之特征選擇中,我們講到了特征選擇的一些要點。本篇我們繼續討論特征工程,不過會重點關注於特征表達部分,即如果對某一個特征的具體表現形式做處理。主要包括缺失值處理,特殊的特征處理比如時間和地理位置處理,離散特征的連續化和離散化處理,連續特征的離散化處理幾個方面。 1. ...
使用sklearn訓練模型,只能輸入數值型變量。因此需要對數據集中的非數值型離散變量進行處理,非數值型離散變量分為兩類:有序型與無序型 一、有序型離散變量處理 什么叫有序型離散變量呢,比如說衣服尺碼,M、L、XL;學歷:小學、初中、高中、本科;這些都屬於有序型變量。 在上圖數據表格中 ...
目錄 1 Filter 1.1 移除低方差特征(Removing features with low variance) 1.2 單變量特征選擇 (Univariate feature selection) 1.2.1 卡方檢驗 (Chi2) 1.2.2 ...