原文:深度學習的激活函數 :sigmoid、tanh、ReLU 、Leaky Relu、RReLU、softsign 、softplus、GELU

深度學習的激活函數 :sigmoid tanh ReLU Leaky Relu RReLU softsign softplus GELU : : wamg瀟瀟閱讀數 更多 分類專欄:python機器學習深度學習 版權聲明:本文為博主原創文章,遵循CC . BY SA版權協議,轉載請附上原文出處鏈接和本聲明。 本文鏈接: https: blog.csdn.net qq article detail ...

2019-11-18 17:56 0 959 推薦指數:

查看詳情

深度學習中的激活函數sigmoidtanhReLU

三種非線性激活函數sigmoidtanhReLUsigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) ReLU:y = max(0, x) 在隱藏層,tanh函數要優於sigmoid函數,可以看作 ...

Tue Apr 14 04:01:00 CST 2020 0 2503
常用激活函數SigmoidTanhReluLeaky Relu、ELU優缺點總結

1、激活函數的作用 什么是激活函數?   在神經網絡中,輸入經過權值加權計算並求和之后,需要經過一個函數的作用,這個函數就是激活函數(Activation Function)。 激活函數的作用?   首先我們需要知道,如果在神經網絡中不引入激活函數,那么在該網絡 ...

Sat Jun 19 00:50:00 CST 2021 0 452
激活函數ReLULeaky ReLU、PReLU和RReLU

激活函數”能分成兩類——“飽和激活函數”和“非飽和激活函數”。 sigmoidtanh是“飽和激活函數”,而ReLU及其變體則是“非飽和激活函數”。使用“非飽和激活函數”的優勢在於兩點: 1.首先,“非飽和激活函數”能解決所謂的“梯度消失”問題。 2.其次,它能加快收斂速度 ...

Wed Nov 17 01:47:00 CST 2021 0 1796
激活函數ReLULeaky ReLU、PReLU和RReLU

激活函數”能分成兩類——“飽和激活函數”和“非飽和激活函數”。 sigmoidtanh是“飽和激活函數”,而ReLU及其變體則是“非飽和激活函數”。使用“非飽和激活函數”的優勢在於兩點: 1.首先,“非飽和激活函數”能解決所謂的“梯度消失”問題。 2.其次,它能加快收斂速度 ...

Thu Mar 29 01:41:00 CST 2018 0 10928
[轉]激活函數ReLULeaky ReLU、PReLU和RReLU

激活函數”能分成兩類——“飽和激活函數”和“非飽和激活函數”。 sigmoidtanh是“飽和激活函數”,而ReLU及其變體則是“非飽和激活函數”。使用“非飽和激活函數”的優勢在於兩點: 1.首先,“非飽和激活函數”能解決所謂的“梯度消失”問題。 2.其次,它能加快收斂速度 ...

Sat Sep 22 03:50:00 CST 2018 0 3919
激活函數sigmoidtanhrelu、Swish

激活函數的作用主要是引入非線性因素,解決線性模型表達能力不足的缺陷   sigmoid函數可以從圖像中看出,當x向兩端走的時候,y值越來越接近1和-1,這種現象稱為飽和,飽和意味着當x=100和x=1000的映射結果是一樣的,這種轉化相當於將1000大於100的信息丟失了很多,所以一般需要歸一化 ...

Thu Sep 27 06:24:00 CST 2018 0 3885
激活函數的比較,sigmoidtanhrelu

1. 什么是激活函數 如下圖,在神經元中,輸入inputs通過加權、求和后,還被作用了一個函數。這個函數就是激活函數Activation Function 2. 為什么要用激活函數 如果不用激活函數,每一層輸出都是上層輸入的線性函數,無論神經網路有多少層,輸出都是輸入的線性組合 ...

Sat Mar 23 22:08:00 CST 2019 0 623
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM