牛頓法(英語:Newton's method)又稱為牛頓-拉弗森方法(英語:Newton-Raphson method),它是一種在實數域和復數域上近似求解方程的方法。方法使用函數f(x)的泰勒級數的前面幾項來尋找方程f(x)=0的根。 一般情況對於f(x)是一元二次的情況直接應用求根公式就可以 ...
.前言 上一節中已經介紹了牛頓法的一些原理,在本節中舉個具體例子,利用牛頓法求解函數最小值。 .例子 求解下列函數最小值: 由於這個函數較為簡單,所以利用f對x y分別求偏導數,再令偏導數等於 ,就可以求得極值點,又該函數是凸函數 如果分析不出,可視化函數,如下圖 ,所以極值點就是最小值點,故最小值點 , . .在這里的話,利用牛頓迭代法求解函數最小值。 步驟: .實施細節 結果: a . ,b ...
2019-11-10 21:46 0 537 推薦指數:
牛頓法(英語:Newton's method)又稱為牛頓-拉弗森方法(英語:Newton-Raphson method),它是一種在實數域和復數域上近似求解方程的方法。方法使用函數f(x)的泰勒級數的前面幾項來尋找方程f(x)=0的根。 一般情況對於f(x)是一元二次的情況直接應用求根公式就可以 ...
概述 優化問題就是在給定限制條件下尋找目標函數\(f(\mathbf{x}),\mathbf{x}\in\mathbf{R}^{\mathbf{n}}\)的極值點。極值可以分為整體極值或局部極值,整體極值即函數的最大/最小值,局部極值就是函數在有限鄰域內的最大/最小值。通常都希望能求得函數的整體 ...
我們每個人都會在我們的生活或者工作中遇到各種各樣的最優化問題,比如每個企業和個人都要考慮的一個問題“在一定成本下,如何使利潤最大化”等。最優化方法是一種數學方法,它是研究在給定約束之下如何尋求某些因素(的量),以使某一(或某些)指標達到最優的一些學科的總稱。隨着學習的深入,博主越來越發現最優化方法 ...
使用阻尼牛頓法求解: 利用Amijio非精確線搜索 初始點x0=[0,0]',經條件1e-6或n=2000 代碼: %建立NTtest.m文件 clear all clc x0=[0,0]'; fun=@(x)100*(x(1)^2-x(2))^2+(x ...
一、牛頓法 對於優化函數\(f(x)\),在\(x_0\)處泰勒展開, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其線性部分,忽略高階無窮小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f ...
本文講解的是無約束優化中幾個常見的基於梯度的方法,主要有梯度下降與牛頓方法、BFGS 與 L-BFGS 算法。 梯度下降法是基於目標函數梯度的,算法的收斂速度是線性的,並且當問題是病態時或者問題規模較大時,收斂速度尤其慢(幾乎不適用); 牛頓法是基於目標函數的二階導數(Hesse 矩陣 ...
最優化_三等分法+黃金分割法+牛頓法 一、實驗目的 掌握一維優化方法的集中算法; 編寫三分法算法 編寫黃金分割法算法 編寫牛頓法算法 二、系統設計 三分法 1.編程思路: 三分法用於求解單峰函數的最值。對於單峰函數,在區間內用兩個mid將區間分成 ...
故事繼續從選定方向的選定步長講起 首先是下降最快的方向 -- 負梯度方向衍生出來的最速下降法 最速下降法 顧名思義,選擇最快下降。包含兩層意思:選擇下降最快的方向,在這一方向上尋找最好的步長。到達后在下一個點重復該步驟。定方向 選步長 前進... 優化問題的模型:\(min f ...