pytorch提取神經網絡模型層結構和參數初始化
torch.nn.Module()類有一些重要屬性,我們可用其下面幾個屬性來實現對神經網絡層結構的提取: 為方面說明,我們首先搭建一個簡單的神經網絡模型,后面所有的內容都是基於這個模型展開的。 運行 ...
基本的卷積神經網絡 提取前兩層網絡結構 提取所有的卷積層網絡 打印卷積層的網絡名字 對權重參數進行初始化操作 ...
2019-10-23 12:45 1 622 推薦指數:
torch.nn.Module()類有一些重要屬性,我們可用其下面幾個屬性來實現對神經網絡層結構的提取: 為方面說明,我們首先搭建一個簡單的神經網絡模型,后面所有的內容都是基於這個模型展開的。 運行 ...
有時間再寫。 ...
在定義網絡時,pythorch會自己初始化參數,但也可以自己初始化,詳見官方實現 ...
在神經網絡中,參數默認是進行隨機初始化的。如果不設置的話每次訓練時的初始化都是隨機的,導致結果不確定。如果設置初始化,則每次初始化都是固定的。 ...
1. 參數初始化的目的是什么? 為了讓神經網絡在訓練過程中學習到有用的信息,這意味着參數梯度不應該為0。而我們知道在全連接的神經網絡中,參數梯度和反向傳播得到的狀態梯度以及入激活值有關。那么參數初始化應該滿足以下兩個條件: 初始化必要條件一:各層激活值不會出現飽和現象 ...
作者:@houkai本文為作者原創,轉載請注明出處:http://www.cnblogs.com/houkai/p/6553221.html 目錄 LeNet AlexNet ...
在學習深度網絡框架的過程中,我們發現一個問題,就是如何輸出各層網絡參數,用於更好地理解,調試和優化網絡?針對這個問題,TensorFlow開發了一個特別有用的可視化工具包:TensorBoard,既可以顯示網絡結構,又可以顯示訓練和測試過程中各層參數的變化情況。本博文分為四個部分,第一部分介紹相關 ...