類別不平衡問題 類別不平衡問題,顧名思義,即數據集中存在某一類樣本,其數量遠多於或遠少於其他類樣本,從而導致一些機器學習模型失效的問題。例如邏輯回歸即不適合處理類別不平衡問題,例如邏輯回歸在欺詐檢測問題中,因為絕大多數樣本都為正常樣本,欺詐樣本很少,邏輯回歸算法會傾向於把大多數樣本 ...
類別不平衡問題 類別不平衡問題,顧名思義,即數據集中存在某一類樣本,其數量遠多於或遠少於其他類樣本,從而導致一些機器學習模型失效的問題。例如邏輯回歸即不適合處理類別不平衡問題,例如邏輯回歸在欺詐檢測問題中,因為絕大多數樣本都為正常樣本,欺詐樣本很少,邏輯回歸算法會傾向於把大多數樣本 ...
一、業務背景 日常工作、比賽的分類問題中常遇到類別型的因變量存在嚴重的偏倚,即類別之間的比例嚴重失調。 樣本量差距過大會導致建模效果偏差。 例如邏輯回歸不適合處理類別不平衡問題,會傾向於將樣本判定為大多數類別,雖然能達到很高的准確率,但是很低的召回率。 出現樣本不均衡場景主要有 ...
類別不平衡問題指分類任務中不同類別的訓練樣本數目差別很大的情況。一般來說,不平衡樣本會導致訓練模型側重樣本數目較多的類別,而“輕視”樣本數目較少類別,這樣模型在測試數據上的泛化能力就會受到影響。一個例子,訓練集中有99個正例樣本,1個負例樣本。在不考慮樣本不平衡的很多情況下,學習算法會使分類器放棄 ...
摘自數據常青藤 樣本分布不均衡將導致樣本量少的分類所包含的特征過少,並很難從中提取規律;即使得到分類模型,也容易產生過度依賴於有限的數據樣本而導致過擬合的問題,當模型應用到新的數據上時,模型的准確性和魯棒性將很差。 樣本分布不平衡主要在於不同類別間的樣本比例差異,以筆者的工作經驗看,如果不同分 ...
在實際生產中,可能會碰到一種比較頭疼的問題,那就是分類問題中類別型的因變量可能存在嚴重的不平衡,即類別之間的比例嚴重失調。 為了解決數據的非平衡問題,2002年Chawla提出了SMOTE算法,並受到學術界和工業界的一致認同。本文將對Smote算法,Smote算法的幾個變形,以及一個smote ...
目錄 類別不平衡(class-imbalance) Softmax回歸模型 引入權重衰減(weight decay)項 Softmax回歸 VS. k個二元分類器 類別不平衡(class-imbalance) 當不同類別 ...
本文詳細介紹了類別不平衡問題,目錄: 1 什么是類別不平衡問題? 2 類別不平衡導致分類困難的原因? 3 類別不平衡的解決方法? 4 如何選擇類別不平衡中學習的評價指標? 5 關於解決方法選擇的一些建議? 6 小結 1 什么是類別不平衡問題? 類別不平衡 ...