原文:深入理解決策樹的最優分類法則

本文作者Key,博客園主頁:https: home.cnblogs.com u key 本內容為個人原創作品,轉載請注明出處或聯系:zhengzha .com 今天學習了決策樹的分類原理,總體來說理解決策樹要比理解SVM簡單的多,原因有二: 決策樹的分類思想與人類的思考模式更為相似 即分而治之。 決策樹在實現時規則非常固定,模式非常單一,降低了其理解難度。 但是,決策樹在選擇最優划分屬性時引入了熵 ...

2019-09-05 22:16 0 575 推薦指數:

查看詳情

深入理解決策樹算法

引言 決策樹(Decision Tree)是機器學習中一種經典的分類與回歸算法。本文主要討論用於分類決策樹決策樹模型呈樹形結構,在分類問題中,決策樹模型可以認為是if-then規則的集合,也可以認為是定義在特征空間與類空間上的條件概率分布。其主要優點是模型具有可讀性,分類速度快。決策樹學習 ...

Fri Nov 08 01:19:00 CST 2019 0 556
決策樹(一)決策樹分類

決策樹 與SVM類似,決策樹在機器學習算法中是一個功能非常全面的算法,它可以執行分類與回歸任務,甚至是多輸出任務。決策樹的算法非常強大,即使是一些復雜的問題,也可以良好地擬合復雜數據集。決策樹同時也是隨機森林的基礎組件,隨機森林在當前是最強大的機器學習算法之一。 在這章我們會先討論如何使用 ...

Fri Feb 28 01:08:00 CST 2020 0 3651
決策樹分類

決策樹分類   決策樹分類歸類於監督學習,能夠根據特征值一層一層的將數據集進行分類。它的有點在於計算復雜度不高,分類出的結果能夠很直觀的呈現,但是也會出現過度匹配的問題。使用ID3算法的決策樹分類第一步需要挑選出一個特征值,能夠將數據集最好的分類,之后遞歸構成分類。使用信息增益,來得到最佳 ...

Wed Apr 25 05:41:00 CST 2018 0 1088
決策樹分類算法

數據挖掘系列(6)決策樹分類算法 從這篇開始,我將介紹分類問題,主要介紹決策樹算法、朴素貝葉斯、支持向量機、BP神經網絡、懶惰學習算法、隨機森林與自適應增強算法、分類模型選擇和結果評價。總共7篇,歡迎關注和交流。   這篇先介紹分類問題的一些基本知識,然后主要講述決策樹算法的原理、實現,最后 ...

Wed Aug 21 01:15:00 CST 2013 0 3597
決策樹分類算法

決策樹算法是一種歸納分類算法,它通過對 訓練集的學習,挖掘出有用的 規則,用於對 新集進行 預測。在其生成過程中,分割時屬性選擇度量指標是關鍵。通過屬性選擇度量,選擇出最好的將樣本分類的屬性。 å³ç­æ åç±»ç®æ³æ¦è¿°" width ...

Wed Oct 23 17:12:00 CST 2019 0 1537
決策樹分類原理

上一篇博客我們看了一個決策樹分類的例子,但是我們沒有深入決策樹分類的內部原理。 這節我們討論的決策樹分類的所有特征的特征值都是離散的,明白了離散特征值如何分類的原理,連續值的也不難理解決策樹分類的核心在於確定那一個特征的那一個特征值分類最有效,可能不同的場景,每個人采用的衡量方法也不一樣 ...

Mon Oct 17 23:53:00 CST 2016 0 2175
決策樹分類及實例

本文介紹機器學習中最基礎最簡單的決策樹分類 參考: https://zhuanlan.zhihu.com/p/133838427 https://zhuanlan.zhihu.com/p/30059442 https://www.kaggle.com/prashant111 ...

Tue Mar 01 01:28:00 CST 2022 0 843
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM