整理一下這幾個量的計算公式,便於記憶 采用信息增益率可以解決ID3算法中存在的問題,因此將采用信息增益率作為判定划分屬性好壞的方法稱為C4.5。需要注意的是,增益率准則對屬性取值較少的時候會有偏好,為了解決這個問題,C4.5並不是直接選擇增益率最大的屬性作為划分屬性,而是之前 ...
這是一個計算決策樹中信息增益 信息增益比和GINI指標的例子。 相關閱讀: Information Gainhttp: www.cs.csi.cuny.edu imberman ai Entropy and Information Gain.htm Decision Treehttps: blog.csdn.net Tomcater article details df iris pd.read ...
2019-09-02 17:01 0 381 推薦指數:
整理一下這幾個量的計算公式,便於記憶 采用信息增益率可以解決ID3算法中存在的問題,因此將采用信息增益率作為判定划分屬性好壞的方法稱為C4.5。需要注意的是,增益率准則對屬性取值較少的時候會有偏好,為了解決這個問題,C4.5並不是直接選擇增益率最大的屬性作為划分屬性,而是之前 ...
上數據挖掘課的時候算過GINI指數,在尋找降維算法的時候突然看到了信息增益算法,突然發現信息增益算法和課上算的GINI指數很相似,於是就用在這次文本分類實驗當中。總的來說信息增益算法是為了求特征t對於分類的貢獻大小。貢獻大則稱信息增益大、貢獻小信息增益小。文本分類自然是找那些對分類貢獻大的詞匯 ...
一:基礎知識 1:個體信息量 -long2pi 2:平均信息量(熵) Info(D)=-Σi=1...n(pilog2pi) 比如我們將一個立方體A拋向空中,記落地時着地的面為f1,f1的取值為{1,2,3,4,5,6},f1的熵entropy(f1)=-(1/6*log ...
ID3、C4.5和CART三種經典的決策樹模型分別使用了信息增益、信息增益比和基尼指數作為選擇最優的划分屬性的准則來構建決策樹。以分類樹來說,構建決策樹的過程就是從根節點(整個數據集)向下進行節點分裂(划分數據子集)的過程,每次划分需要讓分裂后的每個子集內部盡可能包含同一類樣本。信息增益和信息增益 ...
就是一個map的過程。C4.5分類樹就是決策樹算法中最流行的一種。下面給出一個數據集作為算法例子的基礎, ...
離散特征信息增益計算 數據來自《.統計學習方法——李航》5.2.1節中貸款申請樣本數據表 利用pandas的value_counts(),快速計算 refference:python詳細步驟計算信息增益 ...
信息增益是隨機森林算法里面的一個很重要的算法,因為我們在選擇節點的特征項的時候,就要通過信息增益或者是信息增益率來選擇。這里先理解信息增益。 什么是信息增益呢?信息增益(Kullback–Leibler divergence)又稱information divergence ...
1.信息熵:信息熵就是指不確定性,熵越大,不確定性越大 2.關於信息增益: 信息增益是針對一個一個的特征而言的,就是看一個特征t,系統有它和沒它的時候信息量各是多少,兩者的差值就是這個特征給系統帶來的信息量,即增益。系統含有特征t的時候信息量很好計算,就是剛才的式子,它表示的是包含 ...