一、保存、讀取說明 我們創建好模型之后需要保存模型,以方便后續對模型的讀取與調用,保存模型我們可能有下面三種需求:1、只保存模型權重參數;2、同時保存模型圖結構與權重參數;3、在訓練過程的檢查點保存模型數據。下面分別對這三種需求進行實現。 二、僅保存模型參數 僅保存模型參數 ...
導入數據 train images, train labels , test images, test labels tf.keras.datasets.mnist.load data train labels train labels : test labels test labels : train images train images : .reshape , . test images ...
2019-09-02 14:05 0 645 推薦指數:
一、保存、讀取說明 我們創建好模型之后需要保存模型,以方便后續對模型的讀取與調用,保存模型我們可能有下面三種需求:1、只保存模型權重參數;2、同時保存模型圖結構與權重參數;3、在訓練過程的檢查點保存模型數據。下面分別對這三種需求進行實現。 二、僅保存模型參數 僅保存模型參數 ...
最近對tensorflow十分感興趣,所以想做一個系列來詳細講解tensorflow來。 本教程主要由tensorflow2.0官方教程的個人學習復現筆記整理而來,並借鑒了一些keras構造神經網絡的方法,中文講解,方便喜歡閱讀中文教程的朋友,tensorflow官方教程:https ...
1.一般的模型構造、訓練、測試流程 2.自定義損失和指標 自定義指標只需繼承Metric類, 並重寫一下函數 _init_(self),初始化。 update_state(self,y_true,y_pred,sample_weight = None),它使用目標y_true ...
1.一般的模型構造、訓練、測試流程 2.自定義損失和指標 自定義指標只需繼承Metric類, 並重寫一下函數 _init_(self),初始化。 update_state(self,y_true,y_pred,sample_weight = None),它使用目標y_true ...
1.保持序列模型和函數模型 # 構建一個簡單的模型並訓練 from __future__ import absolute_import, division, print_function import tensorflow as tf ...
一. 本機情況 windows 10 無GPU anaconda3 我的anaconda3自帶的python是3.7的。 安裝前:有2個環境,第一個環境base是默認環境(python版本3.7);第二個環境tensorflow是以前安裝 tensorflow 1.14 的時候創建的環境 ...
這里有三種方式保存模型: 第一種: 只保存網絡參數,適合自己了解網絡結構 第二種: 保存整個網絡,可以完美進行恢復 第三個是保存格式。 第一種方式: 實踐操作: 第二種方式:(存入整個模型 ...
如果使用多GPU訓練模型,推薦使用內置fit方法,較為方便,僅需添加2行代碼。 在Colab筆記本中:修改->筆記本設置->硬件加速器 中選擇 GPU 注:以下代碼只能在Colab 上才能正確執行。 可通過以下colab鏈接測試效果《tf_多GPU》: https ...