卷積神經網絡與圖像識別 我們介紹了人工神經網絡,以及它的訓練和使用。我們用它來識別了手寫數字,然而,這種結構的網絡對於圖像識別任務來說並不是很合適。本文將要介紹一種更適合圖像、語音識別任務的神經網絡結構——卷積神經網絡(Convolutional Neural Network, CNN)。說卷積 ...
神經網絡輸入層神經單元個數: 圖像大小 輸出層: 個類別分類,即 個數字 隱藏層個數 : 第 個隱藏層的神經單元數: 第 個隱藏層的神經單元數: 先定義get data init network predict 這 個函數: init network 會讀入保存在 pickle 文件sample weight.pkl中的學習到的權重參數 因為之前我們假設學習已經完成,所以學習到的參數被保存下來。假 ...
2019-08-31 21:11 0 742 推薦指數:
卷積神經網絡與圖像識別 我們介紹了人工神經網絡,以及它的訓練和使用。我們用它來識別了手寫數字,然而,這種結構的網絡對於圖像識別任務來說並不是很合適。本文將要介紹一種更適合圖像、語音識別任務的神經網絡結構——卷積神經網絡(Convolutional Neural Network, CNN)。說卷積 ...
無論是之前學習的MNIST數據集還是Cifar數據集,相比真實環境下的圖像識別問題,有兩個最大的問題,一是現實生活中的圖片分辨率要遠高於32*32,而且圖像的分辨率也不會是固定的。二是現實生活中的物體類別很多,無論是10種還是100種都遠遠不夠,而且一張圖片中不會只出現一個種類的物體 ...
過程: View Code 結果: 分析: cifar10數據集比mnist數據集更完整也更復雜,基於cifar數據集進行10分類比mnist有更高的難度,整體的准確率和召回率都普遍偏低,但適當的增加迭代次數和卷積核的大小有助於提升 ...
卷積神經網絡的結構我隨意設了一個。 結構大概是下面這個樣子: 代碼如下: 最終在測試集上識別率在99%左右。 相關測試數據可以在這里下載到。 ...
title: "Python實現bp神經網絡識別MNIST數據集" date: 2018-06-18T14:01:49+08:00 tags: [""] categories: ["python"] 前言 訓練時讀入的是.mat格式的訓練集,測試正確率時用的是png格式的圖片 代碼 ...
利用TensorFlow1.0搭建卷積神經網絡用於識別MNIST數據集,算是深度學習里的hello world吧。雖然只有兩個卷積層,但在訓練集上的正確率已經基本達到100%了。 代碼如下: 訓練一共訓練了3個多小時,訓練效果應當很棒。 但在測試集上,由於一次直接讀入10000 ...
卷積層的原理和優點 在普通的全連接神經網絡基礎上,加上了卷積層,卷積層可以把低級別的特征逐步提取成為高級別特征的能力,是實現圖像識別、語音識別等人工智能應用的基本原理。所以,由於卷積層這個能自主從原始的數據開始逐步發現特征並最終解決問題的能力,所以卷積層特別適合處理像圖片、視頻、音頻 ...
@ 目錄 ✌ 卷積神經網絡手寫數字圖像識別 1、✌ 導入相關庫 2、✌ 導入手寫數據集 3、✌ 定義數據包裝器 4、✌ 查看數據維度 5、✌ 定義卷積網絡層 6、✌ 定義模型與損失函數、優化器 7、✌ 訓練 ...