原文:機器學習中常用激活函數和損失函數

. 激活函數 . 各激活函數曲線對比 常用激活函數: . 各激活函數優缺點 sigmoid函數 優點:在於輸出映射在 , 范圍內,單調連續,適合用作輸出層,求導容易 缺點:一旦輸入落入飽和區,一階導數接近 ,就可能產生梯度消失的情況 tanh函數 優點:輸出以 為中心,收斂速度比sigmoid函數要快 缺點:存在梯度消失問題 relu函數 優點:目前最受歡迎的激活函數,在x lt 時,硬飽和,在 ...

2019-08-13 15:54 0 1538 推薦指數:

查看詳情

tensorflow中常用激活函數損失函數

激活函數激活函數曲線對比 常用激活函數: 各激活函數優缺點 sigmoid函數 tanh函數 relu函數 elu函數 softplus函數 softmax函數 dropout函數 一般規則 損失 ...

Sat Apr 20 02:18:00 CST 2019 0 1510
機器學習中常用損失函數的整理

機器通過損失函數進行學習。這是一種評估特定算法對給定的數據 建模程度的方法。如果預測值與真實值之前偏離較遠,那么損失函數便會得到一個比較大的值。在一些優化函數的輔助下,損失函數逐漸學會減少預測值與真實值之間的這種誤差。 機器學習中的所有算法都依賴於最小化或最大化某一個函數,我們稱之為“目標函數 ...

Sun Sep 29 08:20:00 CST 2019 0 656
深度學習中常用激活函數

摘要:   1.概述   2.激活函數與導數   3.激活函數對比   4.參考鏈接 內容:   1.概述   深度學習的基本原理是基於人工神經網絡,信號從一個神經元進入,經過非線性的activation function,傳入到下一層神經元;再經過該層神經元的activate,繼續 ...

Fri Apr 13 15:53:00 CST 2018 0 918
機器學習中常見的損失函數

  損失函數機器學習中常用於優化模型的目標函數,無論是在分類問題,還是回歸問題,都是通過損失函數最小化來求得我們的學習模型的。損失函數分為經驗風險損失函數和結構風險損失函數。經驗風險損失函數是指預測結果和實際結果的差別,結構風險損失函數是指經驗風險損失函數加上正則項。通常 ...

Mon Jul 02 04:34:00 CST 2018 0 2050
機器學習中常見的損失函數

損失函數是用來估量你模型的預測值f(x)與真實值Y的不一致程度,它是一個非負實值函數,通常使用L(Y, f(x))來表示,損失函數越小,模型的魯棒性就越好。損失函數是經驗風險函數的核心部分,也是結構風險函數重要組成部分。模型的結構風險函數包括了經驗風險項和正則項,通常可以表示成如下式 ...

Fri Apr 27 09:14:00 CST 2018 0 7121
機器學習常用損失函數

信息熵 信息熵也被稱為熵,用來表示所有信息量的期望。 公式如下: 例如在一個三分類問題中,貓狗馬的概率如下: label 貓 狗 馬 ...

Wed Feb 03 00:07:00 CST 2021 0 306
機器學習常用損失函數

分類損失函數 一、LogLoss對數損失函數(邏輯回歸,交叉熵損失)   有些人可能覺得邏輯回歸的損失函數就是平方損失,其實並不是。平方損失函數可以通過線性回歸在假設樣本是高斯分布的條件下推導得到,而邏輯回歸得到的並不是平方損失。在邏輯回歸的推導中,它假設樣本服從伯努利分布 ...

Sun Sep 15 01:11:00 CST 2019 0 485
機器學習常用損失函數

機器學習常用損失函數 轉載自:機器學習常用損失函數小結 - 王桂波的文章 - 知乎 https://zhuanlan.zhihu.com/p/776861188 1.Loss Function、Cost Function 和 Objective Function 的區別和聯系 損失 ...

Sat Oct 31 17:53:00 CST 2020 0 514
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM