黃文堅的tensorflow實戰一書中的第四章,講述了tensorflow實現多層感知機。Hiton早年提出過自編碼器的非監督學習算法,書中的代碼給出了一個隱藏層的神經網絡,本人擴展到了多層,改進了代碼。實現多層神經網絡時,把每層封裝成一個NetLayer對象(本質是單向鏈表),然后計算隱藏層輸出 ...
,自編碼器簡介 傳統機器學習任務很大程度上依賴於好的特征工程,比如對數值型,日期時間型,種類型等特征的提取。特征工程往往是非常耗時耗力的,在圖像,語音和視頻中提取到有效的特征就更難了,工程師必須在這些領域有非常深入的理解,並且使用專業算法提取這些數據的特征。深度學習則可以解決人工難以提取有效特征的問題,它可以大大緩解機器學習模型對特征工程的依賴。深度學習在早期一度被認為是一種無監督的特征學習 U ...
2019-09-06 19:21 0 1542 推薦指數:
黃文堅的tensorflow實戰一書中的第四章,講述了tensorflow實現多層感知機。Hiton早年提出過自編碼器的非監督學習算法,書中的代碼給出了一個隱藏層的神經網絡,本人擴展到了多層,改進了代碼。實現多層神經網絡時,把每層封裝成一個NetLayer對象(本質是單向鏈表),然后計算隱藏層輸出 ...
]. Neurocomputing,2003,51. 多層感知器由簡單的相互連接的神經元或節點組成,如圖1所示。 ...
背景簡介 TensorFlow實現講解 設計新思路: 參數初始化新思路: 主程序: 圖結構實際實現 Version1: 導入包: import numpy as np import ...
稀疏自編碼器的學習結構: 稀疏自編碼器Ⅰ: 神經網絡 反向傳導算法 梯度檢驗與高級優化 稀疏自編碼器Ⅱ: 自編碼算法與稀疏性 可視化自編碼器訓練結果 Exercise: Sparse Autoencoder 自編碼算法與稀疏性 已經討論了神經網絡在有 ...
部分內容來自:http://ufldl.stanford.edu/wiki/index.php/%E6%A0%88%E5%BC%8F%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95 棧式自編碼神經網絡是一個由多層稀疏自編碼器組成的神經網絡,其前一層自編碼器 ...
引言 前面三篇文章介紹了變分推斷(variational inference),這篇文章將要介紹變分自編碼器,但是在介紹變分自編碼器前,我們先來了解一下傳統的自編碼器。 自編碼器 自編碼器(autoencoder)屬於無監督學習模型(unsupervised learning ...
數據壓縮算法,其中壓縮和解壓縮過程是有損的。自編碼訓練過程,不是無監督學習而是自監督學習。 自編碼器(AutoEnc ...
稀疏自編碼器的學習結構: 稀疏自編碼器Ⅰ: 神經網絡 反向傳導算法 梯度檢驗與高級優化 稀疏自編碼器Ⅱ: 自編碼算法與稀疏性 可視化自編碼器訓練結果 Exercise: Sparse Autoencoder 稀疏自編碼器Ⅰ這部分先簡單講述神經網絡的部分,它和稀疏 ...