原文:朴素貝葉斯分類器

在scikit learn中,提供了 中朴素貝葉斯分類算法:GaussianNB 高斯朴素貝葉斯 MultinomialNB 多項式朴素貝葉斯 BernoulliNB 伯努利朴素貝葉斯 簡單介紹: 高斯朴素貝葉斯:適用於連續型數值,比如身高在 cm以下為一類, cm為一個類,則划分不夠細膩。 多項式朴素貝葉斯:常用於文本分類,特征是單詞,值是單詞出現的次數。 伯努利朴素貝葉斯:所用特征為全局特征, ...

2019-08-06 17:07 0 433 推薦指數:

查看詳情

朴素貝葉斯分類器

朴素貝葉斯分類器是一種與線性模型非常相類似的一種分類器。 它的訓練速度比線性模型更快,但是泛化能力要強。 主要思想:通過獨立查看每個特征來學習參數,並從每個特征中收集簡單的類別統計數據 scikit-learn實現了三種朴素貝葉斯分類器:1、GaussianNB分類器(高斯 ...

Thu Apr 21 02:29:00 CST 2022 0 708
朴素貝葉斯分類器

什么是朴素貝葉斯分類器? 首先看朴素兩個字,啥意思呢??它是英文單詞 naive 翻譯過來的,意思就是簡單的,朴素的。(它哪里簡單呢,后面會看到的:它假設一個事件的各個屬性之間是相互獨立的,這樣簡化了計算過程;這個假設在現實中不太可能成立,但是呢,研究表明對很多分類結果的准確性影響 ...

Fri Dec 02 05:12:00 CST 2016 0 3631
朴素貝葉斯分類器及Python實現

貝葉斯定理 貝葉斯定理是通過對觀測值概率分布的主觀判斷(即先驗概率)進行修正的定理,在概率論中具有重要地位。 先驗概率分布(邊緣概率)是指基於主觀判斷而非樣本分布的概率分布,后驗概率(條件概率)是 ...

Wed Mar 30 05:58:00 CST 2016 0 8843
朴素貝葉斯分類器及Python實現

貝葉斯定理 貝葉斯定理是通過對觀測值概率分布的主觀判斷(即先驗概率)進行修正的定理,在概率論中具有重要地位。 先驗概率分布(邊緣概率)是指基於主觀判斷而非樣本分布的概率分布,后驗概率(條件概率)是 ...

Tue Jun 06 05:50:00 CST 2017 0 5986
朴素貝葉斯分類器(MNIST數據集)

P(y|X)=P(y)*P(X|y)/P(X) 樣本中的屬性相互獨立; 原問題的等價問題為: 數據處理為防止P(y)*P(X|y)的值下溢,對原問題取對數,即: ...

Sat Sep 28 07:22:00 CST 2019 0 782
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM