原文:決策樹如何防止過擬合

決策樹在長成的過程中極易容易出現過擬合的情況,導致泛化能力低。主要有兩種手段可以用於防止過擬合。 提前停止 Early Stopping,在完全長成以前停止,以防止過擬合。主要有以下 種方式: 限制樹的高度,可以利用交叉驗證選擇 利用分類指標,如果下一次切分沒有降低誤差,則停止切分 限制樹的節點個數,比如某個節點小於 個樣本,停止對該節點切分 后剪枝 提前停止的不足 提前停止 是一個不錯的策略,但 ...

2019-08-06 12:43 1 1849 推薦指數:

查看詳情

決策樹防止擬合(預剪枝(Pre-Pruning))

預剪枝(Pre-Pruning):預剪枝就是在構造決策樹的過程中,先對每個結點在划分前進行估計,若果當前結點的划分不能帶來決策樹模型泛華性能的提升,則不對當前結點進行划分並且將當前結點標記為葉結點。 ...

Tue May 05 15:09:00 CST 2020 0 993
決策樹(一)決策樹分類

決策樹 與SVM類似,決策樹在機器學習算法中是一個功能非常全面的算法,它可以執行分類與回歸任務,甚至是多輸出任務。決策樹的算法非常強大,即使是一些復雜的問題,也可以良好地擬合復雜數據集。決策樹同時也是隨機森林的基礎組件,隨機森林在當前是最強大的機器學習算法之一。 在這章我們會先討論如何使用 ...

Fri Feb 28 01:08:00 CST 2020 0 3651
決策樹(二)決策樹回歸

回歸 決策樹也可以用於執行回歸任務。我們首先用sk-learn的DecisionTreeRegressor類構造一顆回歸決策樹,並在一個帶噪聲的二次方數據集上進行訓練,指定max_depth=2: 下圖是這棵的結果: 這棵看起來與之前構造的分類類似。主要 ...

Mon Mar 02 20:09:00 CST 2020 0 1443
決策樹

在現實生活中,我們會遇到各種選擇,不論是選擇男女朋友,還是挑選水果,都是基於以往的經驗來做判斷。如果把判斷背后的邏輯整理成一個結構圖,你會發現它實際上是一個樹狀圖,這就是我們今天要講的決策樹決策樹的工作原理 決策樹基本上就是把我們以前的經驗總結出來。如果我們要出門打籃球,一般會根據“天氣 ...

Sun Apr 07 20:41:00 CST 2019 4 16435
回歸決策樹

分類決策樹的概念和算法比較好理解,並且這方面的資料也很多。但是對於回歸決策樹的資料卻比較少,西瓜書上也只是提了一下,並沒有做深入的介紹,不知道是不是因為回歸用的比較少。實際上網上常見的房價預測的案例就是一個應用回歸的很好的案例,所以我覺得至少有必要把回歸的概念以及算法弄清楚 ...

Sun May 19 05:41:00 CST 2019 0 717
決策樹模型

決策樹的目標是從一組樣本數據中,根據不同的特征和屬性,建立一棵樹形的分類結構。 決策樹的學習本質上是從訓練集中歸納出一組分類規則,得到與數據集矛盾較小的決策樹,同時具有很好的泛化能力。決策樹學習的損失函數通常是正則化的極大似然函數,通常采用啟發式方法,近似求解這一最優化問題。 算法原理 ...

Sat May 18 03:16:00 CST 2019 0 1504
決策樹(一)

簡介   基於的學習算法被認為是最好的和最常用的監督學習方法之一。 基於的方法賦予預測模型高精度,穩定性和易於解釋的能力。 與線性模型不同,它們非常好地映射非線性關系。 它們適用於解決手頭的任何問題(分類或回歸)。決策樹,隨機森林,梯度增強等方法正在各種數據科學問題中廣泛使用 ...

Sat Sep 08 22:32:00 CST 2018 0 4844
決策樹算法

1. 決策樹算法 1.1 背景知識 信息量\(I(X)\):指一個樣本/事件所蘊含的信息,如果一個事情的概率越大,那么就認為該事件所蘊含的信息越少,確定事件不攜帶任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用來描述系統信息量 ...

Thu Jul 18 06:42:00 CST 2019 0 414
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM