回歸模型的性能的評價指標主要有:RMSE(平方根誤差)、MAE(平均絕對誤差)、MSE(平均平方誤差)、R2_score。但是當量綱不同時,RMSE、MAE、MSE難以衡量模型效果好壞。這就需要用到R2_score,實際使用時,會遇到許多問題,今天我們深度研究一下。 預備知識 搞清楚 ...
...
2019-07-23 12:46 0 1450 推薦指數:
回歸模型的性能的評價指標主要有:RMSE(平方根誤差)、MAE(平均絕對誤差)、MSE(平均平方誤差)、R2_score。但是當量綱不同時,RMSE、MAE、MSE難以衡量模型效果好壞。這就需要用到R2_score,實際使用時,會遇到許多問題,今天我們深度研究一下。 預備知識 搞清楚 ...
\(R^2\)不止一種定義方式,這里是scikit-learn中所使用的定義。 As such variance is dataset dependent, R² may not be meaningfully comparable across different datasets. Best ...
注意多維數組 MAE 的計算方法 * multioutput='raw_values' 給出的是每列的 MAE multioutput=[0.3, 0.7] 給出的是加了不同權重的每列的MAE ...
均方誤差(Mean Squared Error, MSE)是衡量“平均誤差”的一種較方便的方法。可以評價數據的變化程度。均方根誤差是均方誤差的算術平方根。 最小二乘(LS)問題是這樣一類優化問題,目標函數是若干項的平方和,每一項具有形式,具體形式如下:minimize (式 ...
分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。下面一一介紹 均方誤差(MSE) MSE (Mean Squared Error)叫做均方誤差。看公式 這里的y是測試集 ...
分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。 MSE和MAE適用於誤差相對明顯的時候,大的誤差也有比較高的權重,RMSE則是針對誤差不是很明顯的時候;MAE是一個線性的指標,所有個體差異在平均值上均等加權 ...
前言 分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。下面一一介紹 均方誤差(MSE) MSE (Mean Squared Error)叫做均方誤差。看公式 ...
,MAE、R-Squared 1.均方誤差(MSE) MSE (Mean Squared Error ...