容斥原理在集合論、概率論、組合數學中都常常出現,它是下面一個結論的推廣。 這是因為,我們分別減|A|、|B|的時候,把|AB|減掉了兩次,因此這里應該再加一次。 它的推廣形式就是容斥定理。 在給出證明之前,我們很有必要充分的理解一下這個公式的內涵。我們基於S ...
.定義 在計數時,必須注意沒有重復,沒有遺漏。為了使重疊部分不被重復計算,人們研究出一種新的計數方法,這種方法的基本思想是:先不考慮重疊的情況,把包含於某內容中的所有對象的數目先計算出來 容 ,然后再把計數時重復計算的數目排斥出去 斥 ,使得計算的結果既無遺漏又無重復,這種計數的方法稱為容斥原理。 舉個栗子,如果被計數的事物有A B C三類,那么,A類和B類和C類元素個數總和 A類元素個數 B類 ...
2019-07-22 19:56 0 440 推薦指數:
容斥原理在集合論、概率論、組合數學中都常常出現,它是下面一個結論的推廣。 這是因為,我們分別減|A|、|B|的時候,把|AB|減掉了兩次,因此這里應該再加一次。 它的推廣形式就是容斥定理。 在給出證明之前,我們很有必要充分的理解一下這個公式的內涵。我們基於S ...
<更新提示> <第一次更新> <正文> 容斥原理 基礎概念 我們假設有全集\(S\),以及\(n\)個集合\(A_1,A_2,...,A_n\),每個集合\(A_i\)中的元素具有性質\(P_i\),現在我們要求不具有任何性質的集合大小,也就是元素 ...
定理 設共有\(n\)個集合,\(A_i\)表示第\(i\)個集合,則所有集合的並集可表示成以下形式: \[|A_1\cup A_2\cup \cdots\cup A_n|=\sum_{i= ...
@ 目錄 普通容斥 例題選講 歐拉函數 經典題目 SetAndSet ZJOI2016 小星星 經典問題 經典問題2 Minmax 容斥 ...
容斥原理。 最近被容斥虐慘了,要總結一下知識點和寫一些題解。 一.容斥原理 首先是很熟悉的奇加偶減的式子。 令$M$為$S$的集合。 $$\left|\bigcup\limits_{i=1}^{n}S_i\right|=\sum\limits_{C\subseteq ...
題意: 已知集合A,B,C, 輸出三集合的並集。 容斥原理(用圖解釋) ∩ ∪ 對於求三集合並集的公式: A∪B∪C=A+B+C - A∩B - A∩C - B∩C + A∩B∩C 對於證明,我就簡單的敘述一下。 因為求並集不能將 ...
容斥原理,容斥系數 眾所周知,容斥原理是計數問題中最雞賊的東西.基本上很多計數問題都要用到容斥,但是有的時候你明明知道要容斥就是不知道怎么容斥.所以特此寫在這里總結一下. 1.簡單傻逼的容斥原理。 一般來說,這種容斥原理一般有n個性質,滿足第\(i\)個性質的元素集合為\(A_i ...
轉自 :http://www.cppblog.com/vici/archive/2011/09/05/155103.aspx 容斥原理(翻譯) 前言: 這篇文章發表於 http://e-maxx.ru/algo ...