一、任務基礎 數據集包含由歐洲人於2013年9月使用信用卡進行交易的數據。此數據集顯示兩天內發生的交易,其中284807筆交易中有492筆被盜刷。數據集非常不平衡,正例(被盜刷)占所有交易的0.172%。,這是因為由於保密問題,我們無法提供有關數據的原始功能和更多背景信息。特征V1,V2 ...
六 混淆矩陣: 混淆矩陣是由一個坐標系組成的,有x軸以及y軸,在x軸里面有 和 ,在y軸里面有 和 。x軸表達的是預測的值,y軸表達的是真實的值。可以對比真實值與預測值之間的差異,可以計算當前模型衡量的指標值。 這里精度的表示: 。之前有提到recall TP TP FN ,在這里的表示具體如下: 下面定義繪制混淆矩陣的函數: def plot confusion matrix cm, class ...
2019-07-19 09:21 0 1295 推薦指數:
一、任務基礎 數據集包含由歐洲人於2013年9月使用信用卡進行交易的數據。此數據集顯示兩天內發生的交易,其中284807筆交易中有492筆被盜刷。數據集非常不平衡,正例(被盜刷)占所有交易的0.172%。,這是因為由於保密問題,我們無法提供有關數據的原始功能和更多背景信息。特征V1,V2 ...
一,課題研究與背景介紹: 1,課題研究: 利用信用卡歷史數據進行機器建模,構建反欺詐模型,預測新的信用卡被盜刷的可能性。 2,背景介紹: 數據集包含由歐洲人於2013年9月使用信用卡進行交易的數據。此數據集顯示兩天內發生的交易,其中284807筆交易中有492筆被盜刷。數據集非常不平衡 ...
python數據分析個人學習讀書筆記-目錄索引 第6章--邏輯回歸項目實戰 ——信用卡欺詐檢測 本章從實戰的角度出發,以真實數據集為背景,一步步講解如何使用Python工具包進行實際數據分析與建模工作。 6.1數據分析與預處理 假設有一份信用卡交易記錄,遺憾的是數據經過了脫敏 ...
導入類庫 作圖函數 數據獲取與解析 數據為結構化數據,不需要抽特征轉化, 但特征Time和Amount的數據規格和其他特征不一樣, 需要對其做特征做特征縮放 ...
...
本文是對100天搞定機器學習|Day33-34 隨機森林的補充 前文對隨機森林的概念、工作原理、使用方法做了簡單介紹,並提供了分類和回歸的實例。 本期我們重點講一下: 1、集成學習、Bagging和隨機森林概念及相互關系 2、隨機森林參數解釋及設置建議 3、隨機森林模型調參實戰 4、隨機森林模型 ...
寫在jupyter里面比較漂亮: https://douzujun.github.io/page/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0%E7%AC%94%E8%A ...
地址:https://www.kaggle.com/mlg-ulb/creditcardfraud 數據概述 數據集包含2013年9月歐洲持卡人通過信用卡進行的交易。該數據集顯示了兩天內發生的交易,在284,807筆交易中,我們有492起欺詐。數據集高度不平衡,陽性類別(欺詐)占所有交易 ...