Shuffle簡介 Shuffle描述着數據從map task輸出到reduce task輸入的這段過程。shuffle是連接Map和Reduce之間的橋梁,Map的輸出要用到Reduce中必須經過shuffle這個環節,shuffle的性能高低直接影響了整個程序的性能和吞吐量。因為在分布式 ...
概述 Shuffle,翻譯成中文就是洗牌。之所以需要Shuffle,還是因為具有某種共同特征的一類數據需要最終匯聚 aggregate 到一個計算節點上進行計算。這些數據分布在各個存儲節點上並且由不同節點的計算單元處理。以最簡單的WordCount為例,其中數據保存在Node Node 和Node 經過處理后,這些數據最終會匯聚到Nodea Nodeb處理,如下圖所示。 這個數據重新打亂然后匯聚到 ...
2019-06-24 15:24 0 1124 推薦指數:
Shuffle簡介 Shuffle描述着數據從map task輸出到reduce task輸入的這段過程。shuffle是連接Map和Reduce之間的橋梁,Map的輸出要用到Reduce中必須經過shuffle這個環節,shuffle的性能高低直接影響了整個程序的性能和吞吐量。因為在分布式 ...
轉載自:https://www.cnblogs.com/itboys/p/9226479.html Shuffle簡介 Shuffle描述着數據從map task輸出到reduce task輸入的這段過程。shuffle是連接Map和Reduce之間的橋梁,Map的輸出要用到Reduce中 ...
。 Spark 也有 Map 階段和 Reduce 階段,因此也會出現 Shuffle 。 Spark ...
------------恢復內容開始------------ 大數據的分布式計算框架目前使用的最多的就是hadoop的mapReduce和Spark,mapReducehe和Spark之間的最大區別是前者較偏向於離線處理,而后者重視實現性,下面主要介紹mapReducehe和Spark兩 ...
源文件放在github,隨着理解的深入,不斷更新,如有謬誤之處,歡迎指正。原文鏈接https://github.com/jacksu/utils4s/blob/master/spark-knowledge/md/sort-shuffle.md 正如你所知,spark實現了多種shuffle方法 ...
1、spark shuffle:spark 的 shuffle 主要發生在 DAG 視圖中的 stage 和 stage 之間,也就是RDD之間是寬依賴的時候,會發生 shuffle。 補充:spark shuffle在很多地方也會參照mapreduce一樣,將它分成兩個階段map階段 ...
介紹 不論MapReduce還是RDD,shuffle都是非常重要的一環,也是影響整個程序執行效率的主要環節,但是在這兩個編程模型里面shuffle卻有很大的異同。 shuffle的目的是對數據進行混洗,將各個節點的同一類數據匯集到某一個節點進行計算,為了就是分布式計算 ...