前面已經介紹過朴素貝葉斯的原理,今天來介紹一下朴素貝葉斯的三個常用模型:多項式模型、伯努利模型和高斯模型。 多項式模型 該模型常用於文本分類,特征是單詞,值是單詞的出現次數。 在多項式模型中,設某文檔d={t1,t2,...,tk},ti(i=1,2,...,k)為在該文檔d中出現的單詞 ...
朴素貝葉斯中的基本假設 訓練數據是由 P left X,Y right 獨立同分布產生的 條件獨立假設 當類別確定時特征之間是相互獨立的 : P left X x Y c k right P left X left right x left right , X left right x left right , ldots , X left n right x left n right Y c k ...
2019-06-17 21:48 0 499 推薦指數:
前面已經介紹過朴素貝葉斯的原理,今天來介紹一下朴素貝葉斯的三個常用模型:多項式模型、伯努利模型和高斯模型。 多項式模型 該模型常用於文本分類,特征是單詞,值是單詞的出現次數。 在多項式模型中,設某文檔d={t1,t2,...,tk},ti(i=1,2,...,k)為在該文檔d中出現的單詞 ...
我理解的朴素貝葉斯模型 我想說:“任何事件都是條件概率。”為什么呢?因為我認為,任何事件的發生都不是完全偶然的,它都會以其他事件的發生為基礎。換句話說,條件概率就是在其他事件發生的基礎上,某事件發生的概率。 條件概率是朴素貝葉斯模型的基礎。 假設,你的xx公司正在面臨着用戶流失的壓力 ...
條件概率 •設A,B為任意兩個事件,若P(A)>0,我們稱在已知事件A發生的條件下,事件B發生的概率為條件概率,記為P(B|A),並定義 乘法公式 •如果P(A)>0 ...
朴素貝葉斯模型 朴素貝葉斯的應用 朴素貝葉斯模型是文本領域永恆的經典,廣泛應用在各類文本分析的任務上。只要遇到了文本分類問題,第一個需要想到的方法就是朴素貝葉斯,它在文本分類任務上是一個非常靠譜的基准(baseline)。 比如對於垃圾郵件的分類,朴素貝葉斯 ...
目錄 一、貝葉斯 什么是先驗概率、似然概率、后驗概率 公式推導 二、為什么需要朴素貝葉斯 三、朴素貝葉斯是什么 條件獨立 舉例:長肌肉 拉普拉斯平滑 半朴素貝葉斯 一、貝葉斯 ...
先上問題吧,我們統計了14天的氣象數據(指標包括outlook,temperature,humidity,windy),並已知這些天氣是否打球(play)。如果給出新一天的氣象指標數據:sunny,c ...
朴素貝葉斯中的朴素是指特征條件獨立假設, 貝葉斯是指貝葉斯定理, 我們從貝葉斯定理開始說起吧. 1. 貝葉斯定理 貝葉斯定理是用來描述兩個條件概率之間的關系 1). 什么是條件概率? 如果有兩個事件A和B, 條件概率就是指在事件B發生的條件下, 事件A發生的概率, 記作P(A|B ...
模型 生成模型介紹 我們定義樣本空間為\(\mathcal{X} \subseteq \mathbb{R}^n\),輸出空間為\(\mathcal{Y} = \{c_1, c_2, ..., c_K\}\)。\(\textbf{X}\)為輸入空間上的隨機向量,其取值為\(\textbf{x ...