剖析千人千面的大腦——推薦引擎部分,其中這篇是定位:對推薦引擎中的核心算法:協同過濾進行深挖。 首先,千人千面融合各種場景,如搜索,如feed流,如廣告,如風控,如策略增長,如購物全流程等等;其次千人千面的大腦肯定是內部的推薦引擎,這里有諸多規則和算法在實現對上述各個場景進行“細分推薦排序 ...
一.UserCF 基於用戶 基於用戶的協同過濾,通過不同用戶對商品的評分來評測用戶之間的相似性,基於用戶之間的相似性進行推薦。簡單來說就是:給用戶推薦和他興趣相似的其它用戶喜歡的商品。 二.ItemCF 基於商品 基於商品的協同過濾,通過用戶對不同商品的評分來評測商品之間的相似性,基於商品之間的相似性做出推薦。簡單來說就是:給用戶推薦和他之前喜歡的商品相似的商品。 三.計算規則 .Co occur ...
2019-06-13 20:46 0 997 推薦指數:
剖析千人千面的大腦——推薦引擎部分,其中這篇是定位:對推薦引擎中的核心算法:協同過濾進行深挖。 首先,千人千面融合各種場景,如搜索,如feed流,如廣告,如風控,如策略增長,如購物全流程等等;其次千人千面的大腦肯定是內部的推薦引擎,這里有諸多規則和算法在實現對上述各個場景進行“細分推薦排序 ...
Collaborative Filtering Recommendation 向量之間的相似度 度量向量之間的相似度方法很多了,你可以用距離(各種距離)的倒數,向量夾角,Pearson相關系數等。 ...
剖析千人千面的大腦——推薦引擎部分,其中這篇是定位:對推薦引擎中的核心算法:協同過濾進行深挖。 首先,千人千面融合各種場景,如搜索,如feed流,如廣告,如風控,如策略增長,如購物全流程等等;其次千人千面的大腦肯定是內部的推薦引擎,這里有諸多規則和算法在實現對上述各個場景進行“細分推薦排序 ...
一、推薦算法 當你在電商網站購物時,天貓會彈出“和你買了同樣物品的人還買了XXX”的信息;當你在SNS社交網站閑逛時,也會看到“你可能認識XXX“的信息;當你在微博添加關注人時,也會看到“你可能對XXX也感興趣”等等。所有這一切,都是背后的推薦算法運作 ...
協同過濾(Collaborative Filtering,簡稱CF)推薦算法是誕生最早,並且較為著名的推薦算法。主要的功能是預測和推薦。算法通過對用戶歷史行為數據的挖掘發現用戶的偏好,基於不同的偏好對用戶進行群組划分並推薦品味相似的商品。協同過濾推薦算法分為兩類,分別是基於用戶的協同過濾算法 ...
一、基本介紹 1. 推薦系統任務 推薦系統的任務就是聯系用戶和信息一方面幫助用戶發現對自己有價值的信息,而另一方面讓信息能夠展現在對它感興趣的用戶面前從而實現信息消費者和信息生產者的雙贏。 2. 與搜索引擎比較 相同點:幫助用戶快速發現有用信息的工具 不同點:和搜索引擎 ...
這個轉自csdn,很貼近工程。 協同過濾(Collective Filtering)可以說是推薦系統的標配算法。 在談推薦必談協同的今天,我們也來談一談基於KNN的協同過濾在實際的推薦應用中的一些心得體會。 我們首先從協同過濾的兩個假設聊起。 兩個假設: 用戶一般會喜歡 ...
3. 基於協同過濾的推薦算法 (用戶和物品的關聯) 協同過濾(Collaborative Filtering,CF)-- 用戶和物品之間關聯的用戶行為數據 ①基於近鄰的協同過濾 ...