原文:sklearn KMeans聚類算法(總結)

基本原理 Kmeans是無監督學習的代表,沒有所謂的Y。主要目的是分類,分類的依據就是樣本之間的距離。比如要分為K類。步驟是: 隨機選取K個點。 計算每個點到K個質心的距離,分成K個簇。 計算K個簇樣本的平均值作新的質心 循環 位置不變,距離完成 距離 Kmeans的基本原理是計算距離。一般有三種距離可選: 歐氏距離 d x,u sqrt sum i n x i mu i 曼哈頓距離 d x,u ...

2018-11-07 18:40 0 4932 推薦指數:

查看詳情

Kmeans聚類算法Sklearn實現

一、KMeans算法原理 1.1 KMeans算法關鍵概念:簇與質心 簇:KMeans算法將一組N個樣本的特征矩陣X划分為K個無交集的簇,直觀上看是一組一組聚集在一起的數據,在一個簇中的數據就認為是同一類。簇就是聚類的結果表現。 質心:簇中所有數據的均值U通常被認為這個簇的“質心 ...

Mon May 10 04:12:00 CST 2021 0 2986
sklearn實踐(一):kmeans聚類

sklearn實踐(一):kmeans聚類 實踐往往比理論要經歷更多的挫折。 一、數據處理 官方給的案例里用的都是sklearn自帶的數據集,只要import之后便萬事大吉,但實際中我們采用的數據往往沒有那么規整,也不是可以一下就fit到模型里去的。經過這次經歷,打算整理一下大致思路 ...

Sun Jul 12 18:57:00 CST 2020 0 3798
sklearn中的KMeans算法

  1、聚類算法又叫做“無監督分類”,其目的是將數據划分成有意義或有用的組(或簇)。這種划分可以基於我們的業務需求或建模需求來完成,也可以單純地幫助我們探索數據的自然結構和分布。   2、KMeans算法將一組N個樣本的特征矩陣X划分為K個無交集的簇,直觀上來看是簇是一組一組聚集在一起的數據 ...

Mon Aug 26 18:41:00 CST 2019 0 463
MapReduce Kmeans聚類算法

最近在網上查看用MapReduce實現的Kmeans算法,例子是不錯,http://blog.csdn.net/jshayzf/article/details/22739063 但注釋太少了,而且參數太多,如果新手學習的話不太好理解。所以自己按照個人的理解寫了一個簡單的例子並添加了詳細的注釋 ...

Sat May 24 02:59:00 CST 2014 3 10863
聚類算法---kmeans以及DBSCAN算法

一、聚類分析又稱群分析,它是研究(樣品或指標)分類問題的一種統計分析方法,同時也是數據挖掘的一個重要算法聚類(Cluster)分析是由若干模式(Pattern)組成的,通常,模式是一個度量(Measurement)的向量,或者是 多維空間中的一個點。 聚類分析以相似性 ...

Thu Nov 01 18:03:00 CST 2018 0 847
聚類--K均值算法:自主實現與sklearn.cluster.KMeans調用

1. (一)選取初始數據中的k個對象作為初始的中心,每個對象代表一個聚類中心 (二) 對於樣本中的數據對象,根據它們與這些聚類中心的歐氏距離,按距離最近的准則將它們分到距離它們最近的聚類中心所對應的類 (三)更新聚類中心:將每個類別中所有對象所對應的均值作為該類 ...

Tue Oct 30 03:34:00 CST 2018 0 2079
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM