原文:回歸決策樹

分類決策樹的概念和算法比較好理解,並且這方面的資料也很多。但是對於回歸決策樹的資料卻比較少,西瓜書上也只是提了一下,並沒有做深入的介紹,不知道是不是因為回歸樹用的比較少。實際上網上常見的房價預測的案例就是一個應用回歸樹的很好的案例,所以我覺得至少有必要把回歸樹的概念以及算法弄清楚。 我們以鳶尾花數據集為例進行分析。 iris 鳶尾花 數據集共有 個屬性: amp Sepal.Length 花萼長度 ...

2019-05-18 21:41 0 717 推薦指數:

查看詳情

決策樹-回歸

決策樹常用於分類問題,但是也能解決回歸問題。 在回歸問題中,決策樹只能使用cart決策樹,而cart決策樹,既可以分類,也可以回歸。 所以我們說的回歸就是指cart。 為什么只能是cart 1. 回想下id3,分裂后需要計算每個類別占總樣本的比例,回歸哪來的類別,c4.5也一樣 ...

Mon Apr 08 02:45:00 CST 2019 0 1161
決策樹回歸

解決問題   實現基於特征范圍的樹狀遍歷的回歸。 解決方案   通過尋找樣本中最佳的特征以及特征值作為最佳分割點,構建一棵二叉樹。選擇最佳特征以及特征值的原理就是通過滿足函數最小。其實選擇的過程本質是對於訓練樣本的區間的分割,基於區間計算均值,最終區域的樣本均值即為預測值 ...

Thu Jan 09 03:15:00 CST 2020 0 2710
決策樹(二)決策樹回歸

回歸 決策樹也可以用於執行回歸任務。我們首先用sk-learn的DecisionTreeRegressor類構造一顆回歸決策樹,並在一個帶噪聲的二次方數據集上進行訓練,指定max_depth=2: 下圖是這棵的結果: 這棵看起來與之前構造的分類類似。主要 ...

Mon Mar 02 20:09:00 CST 2020 0 1443
決策樹-回歸問題

(6,6)決定它對應的輸出。第一維分量6介於5和8之間,第二維分量6小於8,根據此決策樹很容易判斷(6, ...

Fri Apr 12 00:34:00 CST 2019 0 1005
決策樹(分類回歸

是運用於分類以及回歸的一種樹結構。決策樹由節點和有向邊組成,一般一棵決策樹包含一個根節點、若干內部節點和若干 ...

Fri Nov 27 16:39:00 CST 2020 0 567
Sklearn_決策樹_回歸

DecisionTreeRegressor---回歸 一.重要參數 criterion: 1)輸入"mse"使用均方誤差mean squared error(MSE),父節點和葉子節點之間的均方誤差的差額將被用來作為 特征選擇的標准,這種方法通過使用葉子節點的均值來最小化L2損失 ...

Tue May 05 05:55:00 CST 2020 0 1115
決策樹學習——回歸

  回歸也是一種決策樹,不過它處理的數據標簽不是屬於分類的,也就是說它的標簽是一個連續隨機的值,比如說對一個城市的房價的預測,每個月的房價都是隨機波動的值,不像分類任務,要將所有數據根據標簽進行分類。 重要參數、屬性、接口 criterion:回歸衡量分枝質量的指標,支持的標准有三種 ...

Fri May 15 00:20:00 CST 2020 0 981
SparkMLlib回歸算法之決策樹

SparkMLlib回歸算法之決策樹 (一),決策樹概念 1,決策樹算法(ID3,C4.5 ,CART)之間的比較:   1,ID3算法在選擇根節點和各內部節點中的分支屬性時,采用信息增益作為評價標准。信息增益的缺點是傾向於選擇取值較多的屬性,在有些情況下這類屬性可能不會提供太多有價值的信息 ...

Thu May 25 00:24:00 CST 2017 3 2454
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM