Python機器學習筆記(1)——貝葉斯分類器—MultinomialNB
一、內容大綱 1,貝葉斯定理 一、貝葉斯定理 假設對於某個數據集,隨機變量C表示樣本為C類的概率,F1表示測試樣本某特征出現的概率,套用基本貝葉斯公式,則如下所示: 上式表示對於某個樣本,特征F1出現時,該樣本被分為C類的條件概率。那么如何用上式來對測試樣本分類呢? 舉例來說,有個測試 ...
一、內容大綱 1,貝葉斯定理 一、貝葉斯定理 假設對於某個數據集,隨機變量C表示樣本為C類的概率,F1表示測試樣本某特征出現的概率,套用基本貝葉斯公式,則如下所示: 上式表示對於某個樣本,特征F1出現時,該樣本被分為C類的條件概率。那么如何用上式來對測試樣本分類呢? 舉例來說,有個測試 ...
使用python3 學習朴素貝葉斯分類api 設計到字符串提取特征向量 歡迎來到我的git下載源代碼: https://github.com/linyi0604/MachineLearning ...