介紹摘自李航《統計學習方法》 EM算法 EM算法是一種迭代算法,1977年由Dempster等人總結提出,用於含有隱變量(hidden variable)的概率模型參數的極大似然估計,或極大后驗概率估計。EM算法的每次迭代由兩步組成:E步,求期望(expectation);M步,求 ...
介紹一個EM算法的應用例子:高斯混合模型參數估計。 高斯混合模型 高斯混合模型 Gaussian Mixture Model, GMM 是由多個高斯分布組成的模型,其密度函數為多個高斯密度函數的加權組合。 這里考慮一維的情況。假設樣本 x是從 K 個高斯分布中生成的。每個高斯分布為 其中 k 和 k 分別為第 k 個高斯分布的均值和方差。 高斯混合模型 的圖表示 高斯混合模型的概率密度函數為 高斯 ...
2019-04-18 22:56 0 854 推薦指數:
介紹摘自李航《統計學習方法》 EM算法 EM算法是一種迭代算法,1977年由Dempster等人總結提出,用於含有隱變量(hidden variable)的概率模型參數的極大似然估計,或極大后驗概率估計。EM算法的每次迭代由兩步組成:E步,求期望(expectation);M步,求 ...
1. EM算法-數學基礎 2. EM算法-原理詳解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM詳細代碼實現 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GMM(Gaussian mixture model) 混合高斯模型在機器學習、計算機視覺 ...
EM算法 EM算法主要用於求概率密度函數參數的最大似然估計,將問題$\arg \max _{\theta_{1}} \sum_{i=1}^{n} \ln p\left(x_{i} | \theta_{1}\right)$轉換為更加易於計算的$\sum_{i=1}^{n} \ln p\left ...
當概率模型依賴於無法觀測的隱性變量時,使用普通的極大似然估計法無法估計出概率模型中參數。此時需要利用優化的極大似然估計:EM算法。 在這里我只是想要使用這個EM算法估計混合高斯模型中的參數。由於直觀原因,采用一維高斯分布。 一維高斯分布的概率密度函數表示為: 多個高斯分布疊加在一起形成 ...
GMM與EM算法的Python實現 高斯混合模型(GMM)是一種常用的聚類模型,通常我們利用最大期望算法(EM)對高斯混合模型中的參數進行估計。 1. 高斯混合模型(Gaussian Mixture models, GMM) 高斯混合模型(Gaussian Mixture Model ...
1. EM算法-數學基礎 2. EM算法-原理詳解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM詳細代碼實現 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM的前3篇博文分別從數學基礎、EM通用算法原理、EM的高斯混合模型的角度介紹了EM算法 ...
1. EM算法-數學基礎 2. EM算法-原理詳解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代碼實現 5. EM算法-高斯混合模型+Lasso 1. 前言 前面幾篇博文對EM算法和GMM模型進行了介紹,本文我們通過對GMM增加一個懲罰項。 2. 不帶懲罰項的GMM ...
1、IRT模型概述 IRT(item response theory 項目反映理論)模型。IRT模型用來描述被試者能力和項目特性之間的關系。在現實生活中,由於被試者的能力不能通過可觀測的數據進行描述,所以IRT模型用一個潛變量 $ \theta $ 來表示,並考慮與項目相關的一組參數 ...