什么是決策樹? 決策樹是一種基本的分類和回歸方法。以分類決策樹為例: 決策樹通常包含哪三個步驟? 特征選擇、決策樹的生成和決策樹的修剪 決策樹與if-then規則? 直接以一個例子看看數如何構建決策樹的: 根據不同的特征可以有不同的決策樹: 那么如何從根節點開始選擇 ...
由於上一例的實現中只針對了離散數據,為了擴充處理范圍,我實現了一下對線性數據的簡單處理,在其中我選擇用中位數作為指標,平均數 眾數等等其他數據在我看來異曲同工,最終也都會有較相似的結構。 求連續數據的香農熵 與離散數據的處理極其相似,不過在我看來使用上並不會太多,畢竟我們在分類的時候一般不會還是在用如此繁瑣連續的數據進行比對。 簡單來說,就是建立一個字典,把通過指標分類的數據分別計數 在這里是大於 ...
2019-04-11 18:21 0 812 推薦指數:
什么是決策樹? 決策樹是一種基本的分類和回歸方法。以分類決策樹為例: 決策樹通常包含哪三個步驟? 特征選擇、決策樹的生成和決策樹的修剪 決策樹與if-then規則? 直接以一個例子看看數如何構建決策樹的: 根據不同的特征可以有不同的決策樹: 那么如何從根節點開始選擇 ...
參考:《機器學習實戰》- Machine Learning in Action 一、 基本思想 我們所熟知的決策樹的形狀可能如下: 使用決策樹算法的目的就是生成類似於上圖的分類效果。所以算法的主要步驟就是如何去選擇結點。 划分數據集的最大原則是:將無序的數據變得更加有 ...
決策樹和KNN是機器學習的入門級別的算法,所以面試的時候都時常會有面試官要求將決策樹寫出來以用來檢驗面試者的算法基本素養。 1.信息熵 信息熵是表示數據的混亂程度(物理學當中就有熱熵來表示分子混亂程度)。信息熵表現為-log(信息的概率) 那么整體的信息熵的數學期望:對概率*-log(概率 ...
決策樹的Python實現 2017-04-07 Anne Python技術博文 前言: 決策樹的一個重要的任務 是為了理解數據中所蘊含的知識信息,因此決策樹可以使 ...
決策樹 算法優缺點: 優點:計算復雜度不高,輸出結果易於理解,對中間值缺失不敏感,可以處理不相關的特征數據 缺點:可能會產生過度匹配的問題 適用數據類型:數值型和標稱型 算法思想: 1.決策樹構造的整體思想: 決策樹 ...
決策樹的實現太...繁瑣了。 如果只是接受他的原理的話還好說,但是要想用代碼去實現比較糟心,目前運用了《機器學習實戰》的代碼手打了一遍,決定在這里一點點摸索一下該工程。 實例的代碼在使用上運用了香農熵,並且都是來處理離散數據的,因此有一些局限性,但是對其進行深層次的解析有利於對於代碼的運作 ...
決策樹比較常用的算法模型,可以做分類也可以回歸 決策樹算法重點 對特征的選擇,可以使用熵,也可以使用基尼系數,通過信息增益或者信息增益率選擇最好的特征 決策樹的剪枝,有兩種策略,一種是預剪枝,一種是后剪枝,預剪枝可以通過限制樹的高度,葉子節點個數,信息增益等進行,使得樹邊建立邊剪枝 ...
本次作業為實現天氣預測的樹模型,圖部分沒有實現,但是,框架部分實現了。 操作系統:win 10 編輯環境:anaconda Python版本:3.6 先給出代碼: 其實現結果為: 手動畫出模型為: 另外,看看到一個利用自帶函數的一個寫法,筆者還沒有實現,希望 ...