原文:C4.5決策樹分裂詳解(離散屬性和連續屬性)

決策樹構建過程: 將所有訓練數據集放在根節點上 遍歷每種屬性的每種分割方式,找到最好的分割點 根據 中最好的分割點將根節點分割成多個子節點 大於等於 個 對剩下的樣本和屬性重復執行步驟 ,直到每個子節點中的數據都屬於同一類為止。 C . 算法: C . 算法是采用信息增益率來進行節點的分裂的,公式為:, 其中, , 而, ,並且要求信息增益率越大越好。 下面舉例具體計算,如下圖為各種天氣下是否打高 ...

2019-04-10 22:04 0 3419 推薦指數:

查看詳情

決策樹系列(四)——C4.5

預備知識:決策樹、ID3 如上一篇文章所述,ID3方法主要有幾個缺點:一是采用信息增益進行數據分裂,准確性不如信息增益率;二是不能對連續數據進行處理,只能通過連續數據離散化進行處理;三是沒有采用剪枝的策略,決策樹的結構可能會過於復雜,可能會出現過擬合的情況。 C4.5 ...

Wed Jan 13 05:55:00 CST 2016 1 6584
決策樹-C4.5算法(三)

在上述兩篇的文章中主要講述了決策樹的基礎,但是在實際的應用中經常用到C4.5算法,C4.5算法是以ID3算法為基礎,他在ID3算法上做了如下的改進:  1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足,公式為GainRatio(A);   2) 在構造 ...

Sun Aug 21 05:10:00 CST 2016 0 3272
C4.5決策樹

C4.5決策樹在ID3決策樹的基礎之上稍作改進,請先閱讀ID3決策樹C4.5克服了ID3的2個缺點: 1.用信息增益選擇屬性時偏向於選擇分枝比較多的屬性值,即取值多的屬性 2.不能處理連貫屬性 Outlook ...

Thu Jan 03 05:54:00 CST 2013 8 41088
C4.5決策樹

C4.5是一系列用在機器學習和數據挖掘的分類問題中的算法。它的目標是監督學習:給定一個數據集,其中的每一個元組都能用一組屬性值來描述,每一個元組屬於一個互斥的類別中的某一類。C4.5的目標是通過學習,找到一個從屬性值到類別的映射關系,並且這個映射能用於對新的類別未知的實體進行分類。 C4.5 ...

Sun Aug 14 22:41:00 CST 2016 0 2904
決策樹C4.5了解一下[微笑]

決策樹遵循“分而治之”策略,是一種樹形結構,其中每個內部結點表示在一個屬性上的測試,每個分支代表一個測試輸出,每個葉結點代表一種類別,目的是產生一顆泛化能力強,即處理未見示例能力強的決策樹。 優點:可以自學習 缺點:過擬合、泛化能力弱,生成的不一定全局最優 划分選擇:決策樹學習的關鍵是 ...

Wed May 09 21:52:00 CST 2018 0 1185
決策樹算法原理(ID3,C4.5)

決策樹算法原理(CART分類) CART回歸 決策樹的剪枝   決策樹可以作為分類算法,也可以作為回歸算法,同時特別適合集成學習比如隨機森林。 1. 決策樹ID3算法的信息論基礎   1970年昆蘭找到了用信息論中的熵來度量決策樹決策選擇過程,昆蘭把這個算法叫做 ...

Tue Jan 15 00:19:00 CST 2019 0 3868
Python實現決策樹C4.5算法

 為什么要改進成C4.5算法 原理   C4.5算法是在ID3算法上的一種改進,它與ID3算法最大的區別就是特征選擇上有所不同,一個是基於信息增益比,一個是基於信息增益。   之所以這樣做是因為信息增益傾向於選擇取值比較多的特征(特征越多,條件熵(特征划分后的類別變量的熵)越小 ...

Sat Apr 22 04:01:00 CST 2017 2 7749
決策樹(上)-ID3、C4.5、CART

參考資料(要是對於本文的理解不夠透徹,必須將以下博客認知閱讀,方可全面了解決策樹): 1.https://zhuanlan.zhihu.com/p/85731206 2.https://zhuanlan.zhihu.com/p/29980400 3.https://github.com ...

Sun Nov 17 04:18:00 CST 2019 0 414
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM