預備知識:決策樹、ID3 如上一篇文章所述,ID3方法主要有幾個缺點:一是采用信息增益進行數據分裂,准確性不如信息增益率;二是不能對連續數據進行處理,只能通過連續數據離散化進行處理;三是沒有采用剪枝的策略,決策樹的結構可能會過於復雜,可能會出現過擬合的情況。 C4.5 ...
決策樹構建過程: 將所有訓練數據集放在根節點上 遍歷每種屬性的每種分割方式,找到最好的分割點 根據 中最好的分割點將根節點分割成多個子節點 大於等於 個 對剩下的樣本和屬性重復執行步驟 ,直到每個子節點中的數據都屬於同一類為止。 C . 算法: C . 算法是采用信息增益率來進行節點的分裂的,公式為:, 其中, , 而, ,並且要求信息增益率越大越好。 下面舉例具體計算,如下圖為各種天氣下是否打高 ...
2019-04-10 22:04 0 3419 推薦指數:
預備知識:決策樹、ID3 如上一篇文章所述,ID3方法主要有幾個缺點:一是采用信息增益進行數據分裂,准確性不如信息增益率;二是不能對連續數據進行處理,只能通過連續數據離散化進行處理;三是沒有采用剪枝的策略,決策樹的結構可能會過於復雜,可能會出現過擬合的情況。 C4.5 ...
在上述兩篇的文章中主要講述了決策樹的基礎,但是在實際的應用中經常用到C4.5算法,C4.5算法是以ID3算法為基礎,他在ID3算法上做了如下的改進: 1) 用信息增益率來選擇屬性,克服了用信息增益選擇屬性時偏向選擇取值多的屬性的不足,公式為GainRatio(A); 2) 在樹構造 ...
C4.5決策樹在ID3決策樹的基礎之上稍作改進,請先閱讀ID3決策樹。 C4.5克服了ID3的2個缺點: 1.用信息增益選擇屬性時偏向於選擇分枝比較多的屬性值,即取值多的屬性 2.不能處理連貫屬性 Outlook ...
C4.5是一系列用在機器學習和數據挖掘的分類問題中的算法。它的目標是監督學習:給定一個數據集,其中的每一個元組都能用一組屬性值來描述,每一個元組屬於一個互斥的類別中的某一類。C4.5的目標是通過學習,找到一個從屬性值到類別的映射關系,並且這個映射能用於對新的類別未知的實體進行分類。 C4.5 ...
決策樹遵循“分而治之”策略,是一種樹形結構,其中每個內部結點表示在一個屬性上的測試,每個分支代表一個測試輸出,每個葉結點代表一種類別,目的是產生一顆泛化能力強,即處理未見示例能力強的決策樹。 優點:可以自學習 缺點:過擬合、泛化能力弱,生成的樹不一定全局最優 划分選擇:決策樹學習的關鍵是 ...
決策樹算法原理(CART分類樹) CART回歸樹 決策樹的剪枝 決策樹可以作為分類算法,也可以作為回歸算法,同時特別適合集成學習比如隨機森林。 1. 決策樹ID3算法的信息論基礎 1970年昆蘭找到了用信息論中的熵來度量決策樹的決策選擇過程,昆蘭把這個算法叫做 ...
為什么要改進成C4.5算法 原理 C4.5算法是在ID3算法上的一種改進,它與ID3算法最大的區別就是特征選擇上有所不同,一個是基於信息增益比,一個是基於信息增益。 之所以這樣做是因為信息增益傾向於選擇取值比較多的特征(特征越多,條件熵(特征划分后的類別變量的熵)越小 ...
參考資料(要是對於本文的理解不夠透徹,必須將以下博客認知閱讀,方可全面了解決策樹): 1.https://zhuanlan.zhihu.com/p/85731206 2.https://zhuanlan.zhihu.com/p/29980400 3.https://github.com ...