什么是決策樹? 決策樹是一種基本的分類和回歸方法。以分類決策樹為例: 決策樹通常包含哪三個步驟? 特征選擇、決策樹的生成和決策樹的修剪 決策樹與if-then規則? 直接以一個例子看看數如何構建決策樹的: 根據不同的特征可以有不同的決策樹: 那么如何從根節點開始選擇 ...
樣本選自周志華老師的西瓜書 樣本: 將上面的樣本制作成為一個CSV文件,保存的編碼為utf ,文中保存在 home jsj datetest 下名字wm .csv 需要導入的文件: 導入文件: 這段代碼的運行結果: lt csv.reader object at x fa d gt 編號 , 色澤 , 根蒂 , 敲聲 , 紋理 , 臍部 , 觸感 , 好瓜 分離標簽和特征值 將行信息轉變成為lis ...
2019-03-30 12:09 0 713 推薦指數:
什么是決策樹? 決策樹是一種基本的分類和回歸方法。以分類決策樹為例: 決策樹通常包含哪三個步驟? 特征選擇、決策樹的生成和決策樹的修剪 決策樹與if-then規則? 直接以一個例子看看數如何構建決策樹的: 根據不同的特征可以有不同的決策樹: 那么如何從根節點開始選擇 ...
參考:《機器學習實戰》- Machine Learning in Action 一、 基本思想 我們所熟知的決策樹的形狀可能如下: 使用決策樹算法的目的就是生成類似於上圖的分類效果。所以算法的主要步驟就是如何去選擇結點。 划分數據集的最大原則是:將無序的數據變得更加有 ...
決策樹和KNN是機器學習的入門級別的算法,所以面試的時候都時常會有面試官要求將決策樹寫出來以用來檢驗面試者的算法基本素養。 1.信息熵 信息熵是表示數據的混亂程度(物理學當中就有熱熵來表示分子混亂程度)。信息熵表現為-log(信息的概率) 那么整體的信息熵的數學期望:對概率*-log(概率 ...
決策樹的Python實現 2017-04-07 Anne Python技術博文 前言: 決策樹的一個重要的任務 是為了理解數據中所蘊含的知識信息,因此決策樹可以使 ...
決策樹 算法優缺點: 優點:計算復雜度不高,輸出結果易於理解,對中間值缺失不敏感,可以處理不相關的特征數據 缺點:可能會產生過度匹配的問題 適用數據類型:數值型和標稱型 算法思想: 1.決策樹構造的整體思想: 決策樹 ...
(一)認識決策樹 1、決策樹分類原理 決策樹是通過一系列規則對數據進行分類的過程。它提供一種在什么條件下會得到什么值的類似規則的方法。決策樹分為分類樹和回歸樹兩種,分類樹對離散變量做決策樹,回歸樹對連續變量做決策樹。 近來的調查表明決策樹也是最經常使用的數據挖掘算法,它的概念 ...
決策樹是什么 決策樹是基於樹結構來進行決策,這恰是人類在面臨決策問題時一種很自然的處理機制。例如,我們要對“這是好瓜嗎?”這樣的問題進行決策時,通常會進行一系列的判斷或“子決策”:我們先看“它是什么顏色?”,如果是“青綠色”,則我們再看“它的根蒂是什么形態?”,如果是“蜷縮 ...
決策樹比較常用的算法模型,可以做分類也可以回歸 決策樹算法重點 對特征的選擇,可以使用熵,也可以使用基尼系數,通過信息增益或者信息增益率選擇最好的特征 決策樹的剪枝,有兩種策略,一種是預剪枝,一種是后剪枝,預剪枝可以通過限制樹的高度,葉子節點個數,信息增益等進行,使得樹邊建立邊剪枝 ...