前言 分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。下面一一介紹 均方誤差(MSE) MSE (Mean Squared Error)叫做均方誤差。看公式 ...
,F 准確率 召回率 准確率 召回率 F 的值是精准率與召回率的調和平均數。F 的取值范圍從 到 的數量越大,表明實現越理想。 Precision 精准率 TP TP FP Recall 召回率 TP TP FN ,均方誤差 MSE,Mean Square error 是回歸精度的常用評價指標 MSE n sum yi f xi 其中,yi為實際值,f xi 為y的預測值,n為觀測值數量。 ...
2019-03-15 10:44 0 1478 推薦指數:
前言 分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。下面一一介紹 均方誤差(MSE) MSE (Mean Squared Error)叫做均方誤差。看公式 ...
簡書 原作者 skullfang https://www.jianshu.com/p/9ee85fdad150 https://blog.csdn.net/zrh_CSDN/article/details/81190001 分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE ...
分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。 MSE和MAE適用於誤差相對明顯的時候,大的誤差也有比較高的權重,RMSE則是針對誤差不是很明顯的時候;MAE是一個線性的指標,所有個體差異在平均值上均等加權 ...
分類問題的評價指標是准確率,那么回歸算法的評價指標就是MSE,RMSE,MAE、R-Squared。下面一一介紹 均方誤差(MSE) MSE (Mean Squared Error)叫做均方誤差。看公式 這里的y是測試集 ...
預測評價指標RMSE、MSE、MAE、MAPE、SMAPE 2019-02-21 10:50:31 手撕機 閱讀數 10947 版權聲明:本文為博主原創文章,遵循 CC ...
參考鏈接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具體更詳細的可以查閱周志華的西瓜書第二章,寫的非常詳細~ 一、機器學習性能評估指標 1.准確率(Accurary) 准確率是我們最常見的評價指標,而且很容易理解,就是被分對 ...
衡量線性回歸法的指標 MSE,RMS,MAE以及評價回歸算法 R Square 衡量線性回歸法的指標 對於分類問題來說,我們將原始數據分成了訓練數據集和測試數據集兩部分,我們使用訓練數據集得到模型以后使用測試數據集進行測試然后和測試數據集自帶的真實的標簽進行對比,那么這樣一來,我們就得 ...
原文鏈接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要內容:機器學習中常見的幾種評價指標,它們各自的含義和計算(注意本文針對二元分類器!) 1、混淆矩陣 True Positive(真正,TP):將正類預測 ...