卷積神經網絡(Convolutional Neural Network, CNN)是一種前饋神經網絡, 在計算機視覺等領域被廣泛應用. 本文將簡單介紹其原理並分析Tensorflow官方提供的示例. 關於神經網絡與誤差反向傳播的原理可以參考作者的另一篇博文BP神經網絡與Python實現. 了解 ...
卷積神經網絡簡介 在介紹卷積神經網絡 CNN 之前,我們需要了解全連接神經網絡與卷積神經網絡的區別,下面先看一下兩者的結構,如下所示: 圖 全連接神經網絡與卷積神經網絡結構 雖然上圖中顯示的全連接神經網絡結構和卷積神經網絡的結構直觀上差異比較大,但實際上它們的整體架構是非常相似的。從上圖中可以看出,卷積神經網絡也是通過一層一層的節點組織起來的。和全連接神經網絡一樣,卷積神經網絡中的每一個節點都是 ...
2019-03-08 15:39 0 1130 推薦指數:
卷積神經網絡(Convolutional Neural Network, CNN)是一種前饋神經網絡, 在計算機視覺等領域被廣泛應用. 本文將簡單介紹其原理並分析Tensorflow官方提供的示例. 關於神經網絡與誤差反向傳播的原理可以參考作者的另一篇博文BP神經網絡與Python實現. 了解 ...
1.標准卷積神經網絡 標准的卷積神經網絡由輸入層、卷積層(convolutional layer)、下采樣層(downsampling layer)、全連接層(fully—connected layer)和輸出層構成。 卷積層也稱為檢測層 下采樣層也稱為池化層(pooling ...
一.概述 卷積神經網絡【Convolutional Neural Networks,CNN】是一類包含卷積計算且具有深度結構的前饋神經網絡【Feedforward Neural Networks】是深度學習的代表算法之一。卷積神經網絡具有表征學習【representation ...
本文已同步本人另外一個博客(http://blog.csdn.net/qq_37608890/article/details/79371347) 本文根據最近學習TensorFlow書籍網絡文章的情況,特將一些學習心得做了總結,詳情如下.如有不當之處,請各位大拿 ...
。 一、相關性概念 1、卷積神經網絡(ConvolutionNeural Network,CNN) ...
tensorflow搭建卷積神經網絡非常簡單,我們使用卷積神經網絡對fashion mnist數據集進行圖片分類,首先導包: 導入數據集: 查看圖片的shape維度: 輸出: 由於我們卷積神經網絡需要的是四維的數據,也就是一共 ...
轉自:http://blog.csdn.net/cxmscb/article/details/71023576 一、CNN的引入 在人工的全連接神經網絡中,每相鄰兩層之間的每個神經元之間都是有邊相連的。當輸入層的特征維度變得很高時,這時全連接網絡需要訓練的參數就會增大很多,計算速度就會變得 ...
在TensorFlow中,使用tr.nn.conv2d來實現卷積操作,使用tf.nn.max_pool進行最大池化操作。通過闖傳入不同的參數,來實現各種不同類型的卷積與池化操作。 卷積函數tf.nn.conv2d TensorFlow里使用tf.nn.conv2d函數來實現卷積,其格式 ...