隨機森林不需要交叉驗證! 隨機森林屬於bagging集成算法,采用Bootstrap,理論和實踐可以發現Bootstrap每次約有1/3的樣本不會出現在Bootstrap所采集的樣本集合中。故沒有參加決策樹的建立,這些數據稱為袋外數據oob,歪點子來了,這些袋外數據可以用於取代測試集 ...
IMPORT gt gt gt import numpy gt gt gt from numpy import allclose gt gt gt from pyspark.ml.linalg import Vectors gt gt gt from pyspark.ml.feature import StringIndexer gt gt gt from pyspark.ml.classifi ...
2019-02-27 18:46 0 1355 推薦指數:
隨機森林不需要交叉驗證! 隨機森林屬於bagging集成算法,采用Bootstrap,理論和實踐可以發現Bootstrap每次約有1/3的樣本不會出現在Bootstrap所采集的樣本集合中。故沒有參加決策樹的建立,這些數據稱為袋外數據oob,歪點子來了,這些袋外數據可以用於取代測試集 ...
https://blog.csdn.net/xiezhen_zheng/article/details/82011908 參考:特征篩選方法 https://blog.csdn.net/m0_37316673/article/details/107524247 ...
完整代碼: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始數據分析和數據處理 Titanic系列之數據變換 Titanic系列之派生屬性&維歸約 之前的三篇博文已經進行了一次還算完整的特征工程 ...
原文鏈接:http://tecdat.cn/?p=13546 變量重要性圖是查看模型中哪些變量有趣的好工具。由於我們通常在隨機森林中使用它,因此它看起來非常適合非常大的數據集。大型數據集的問題在於許多特征是“相關的”,在這種情況下,很難比較可變重要性圖的值的解釋。例如,考慮一個非常簡單 ...
...
基於隨機森林做回歸任務(數據預處理、MAPE指標評估、可視化展示、特征重要性、預測和實際值差異顯示圖) 2019-03-13 10:55:04 PanDawson 閱讀數 3444更多 分類專欄: 機器學習 ...
基於模型刷選特征方法有:排列重要性、shap value、null importance 這里簡單介紹一下排列重要性: 一、排列重要性原理 首先建立一個模型,計算某列特征重要性時,打亂該列順序,其余列不變,然后再使用打亂后的數據來預測,最后計算正確率;如果某列對模型預測很重要,那么打亂該列 ...