原文:KFold,StratifiedKFold k折交叉切分

python金融風控評分卡模型和數據分析微專業課 博主親自錄制視頻 :http: dwz.date b vv 原文鏈接 https: blog.csdn.net wqh jingsong article details StratifiedKFold用法類似Kfold,但是他是分層采樣,確保訓練集,測試集中各類別樣本的比例與原始數據集中相同。 例子: import numpy as np from ...

2019-02-26 16:40 0 1958 推薦指數:

查看詳情

k交叉驗證KFold()函數的使用

KFold(n_split, shuffle, random_state)   參數:n_splits:要划分的數      shuffle: 每次都進行shuffle,測試集中數的總和就是訓練集的個數      random_state:隨機狀態 from ...

Thu Mar 19 05:15:00 CST 2020 0 1690
sklearn的K交叉驗證函數KFold使用

K交叉驗證時使用: KFold(n_split, shuffle, random_state)   參數:n_split:要划分的數      shuffle: 每次都進行shuffle,測試集中數的總和就是訓練集的個數      random_state:隨機狀態 ...

Tue Mar 19 21:54:00 CST 2019 2 13488
StratifiedKFoldKFold的區別(幾種常見的交叉驗證)

一、交叉驗證的定義 交叉驗證即把得到的樣本數據進行切分,組合為不同的訓練集和測試集,用訓練集來訓練模型,用測試集來評估模型預測的好壞。交叉驗證通過重復使用數據,多次切分可得到多組不同的訓練集和測試集,某次訓練集中的某樣本在下次可能成為測試集中的樣本,即所謂“交叉”。 通常在數據量不大,或者想要 ...

Wed Jan 20 04:31:00 CST 2021 0 672
StratifiedKFoldKFold

概述:StratifiedKFold用法類似Kfold,但是他是分層采樣,確保訓練集,測試集中各類別樣本的比例與原始數據集中相同。 注意返回的僅僅是索引號,可以看到上圖中StratifiedKFold 分層采樣交叉切分,確保訓練集,測試集中各類別樣本的比例與原始數據集中相同 ...

Wed Aug 19 19:19:00 CST 2020 0 546
機器學習筆記:sklearn交叉驗證之KFoldStratifiedKFold

一、交叉驗證 機器學習中常用交叉驗證函數:KFoldStratifiedKFold。 方法導入: StratifiedKFold:采用分層划分的方法(分層隨機抽樣思想),驗證集中不同類別占比與原始樣本的比例一致,划分時需傳入標簽特征 KFold:默認隨機划分訓練集、驗證集 ...

Tue Mar 01 08:08:00 CST 2022 0 1415
k-交叉驗證KFold

交叉驗證的原理放在后面,先看函數。 設X是一個9*3的矩陣,即9個樣本,3個特征,y是一個9維列向量,即9個標簽。現在我要進行3交叉驗證。 執行kFold = KFold(n_splits=3) :其中KFold是一個類,n_split=3表示,當執行KFold的split函數后,數據集 ...

Tue Aug 06 05:10:00 CST 2019 0 8231
K交叉驗證

交叉驗證的思想   交叉驗證主要用於防止模型過於復雜而引起的過擬合,是一種評價訓練數據的數據集泛化能力的統計方法。其基本思想是將原始數據進行划分,分成訓練集和測試集,訓練集用來對模型進行訓練,測試集用來測試訓練得到的模型,以此來作為模型的評價指標。 簡單的交叉驗證   將原始數據D按比例划分 ...

Sun Jun 02 04:59:00 CST 2019 0 2668
K交叉驗證

在機器學習領域,特別是涉及到模型的調參與優化部分,k交叉驗證是一個經常使用到的方法,本文就結合示例對它做一個簡要介紹。 該方法的基本思想就是將原訓練數據分為兩個互補的子集,一部分做為訓練數據來訓練模型,另一部分做為驗證數據來評價模型。(以下將前述的兩個子集的並集稱為原訓練集,將它的兩個互補子集 ...

Wed Feb 12 23:00:00 CST 2020 0 5041
 
粵ICP備18138465號   © 2018-2025 CODEPRJ.COM